DOI QR코드

DOI QR Code

Temperature-dependent Development and Fecundity of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on Corns

옥수수에서 기장테두리진딧물의 온도 의존적 발육과 산자 특성

  • Park, Jeong Hoon (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University) ;
  • Kwon, Soon Hwa (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University) ;
  • Kim, Tae Ok (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University) ;
  • Oh, Sung Oh (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University) ;
  • Kim, Dong-Soon (The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University)
  • 박정훈 (제주대학교 생명자원과학대학 식물자원환경전공) ;
  • 권순화 (제주대학교 생명자원과학대학 식물자원환경전공) ;
  • 김태옥 (제주대학교 생명자원과학대학 식물자원환경전공) ;
  • 오성오 (제주대학교 생명자원과학대학 식물자원환경전공) ;
  • 김동순 (제주대학교 아열대농업생명과학연구소)
  • Received : 2016.03.22
  • Accepted : 2016.05.13
  • Published : 2016.06.01

Abstract

Temperature-dependent development and fecundity of apterious Rhopalosiphum padi (L.) (Hemiptera: Aphididae) were examined at six constant temperatures (10, 15, 20, 25, 30 and $35{\pm}1.0^{\circ}C$, RH 50-70%, 16L:8D). Development time of nymphs decreased with increasing temperature and ranged from 42.9 days at $10^{\circ}C$ to 4.7 days at $30^{\circ}C$. The nymphs did not develop until adult at $35^{\circ}C$ because the nymphs died during the 2nd instar. The lower threshold temperature and thermal constant of nymph were estimated as $8.3^{\circ}C$ and 101.6 degree days, respectively. The relationships between development rates of nymph and temperatures were well described by the nonlinear model of Lactin 2. The distribution of development times of each stage was successfully fitted to the Weibull function. The longevity of apterious adults decreased with increasing temperature ranging from 24.0 days at $15^{\circ}C$ to 4.3 days at $30^{\circ}C$, with abnormally short longevity of 11.1 days at $10^{\circ}C$. R. padi showed the highest fecundity at $20^{\circ}C$ (38.2) and the lowest fecundity at $10^{\circ}C$ (3.9). In this study, we provided component sub-models for the oviposition model of R. padi: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate as well as adult aging rate based on the adult physiological age.

기장테두리진딧물의 온도의존적 발육과 산자(산란) 특성을 구명하기 위하여 6개의 항온조건(10, 15, 20, 25, 30, $35{\pm}1.0^{\circ}C$, RH 50~70%, 16L:8D)에서 실험을 실시하였다. 약충의 발육기간은 $10^{\circ}C$에서 42.9일과 $30^{\circ}C$에서 4.7일로 온도가 증가할수록 발육기간이 감소하였다. 약충은 $35^{\circ}C$에서 2영기 이후 성충까지 발육하지 못하였다. 선형모형 결과 약충의 발육영점온도는 $8.3^{\circ}C$, 발육 유효적산온도는 101.6DD 이었다. 약충 발육율과 온도와의 관계는 비선형 Lactin 2으로 잘 설명되었다. 약충 발육기간의 분포는 Weibull 함수를 이용하여 분석하였다. 성충수명은 온도가 증가함에 따라 감소하였는데, $15^{\circ}C$에서 24.0일, $30^{\circ}C$에서 4.3일의 범위에 있었고, $10^{\circ}C$에서 비정상적으로 수명이 짧았다 (11.1일). 총산자수는 $20^{\circ}C$에서 38.2마리로 최대값을 보였고, $10^{\circ}C$에서 3.4마리로 최소값을 나타냈다. 본 실험의 결과를 통하여 무시 성충의 산자모형을 작성할 수 있는 온도별 총산자수 모형, 연령별 누적생존율 모형, 연령별 누적 산자율 모형 및 생리적 연령 계산을 위한 성충 노화율 모형을 제시하였다.

Keywords

References

  1. Asin, L., Pons, X., 2001. Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their population dynamics on the northeastern Iberian peninsula. Environ. Entomol. 30, 1127-1134. https://doi.org/10.1603/0046-225X-30.6.1127
  2. Auad, A.M., Alves, S.O., Carvalho, C.A., Silva, D.M., Resende, T.T., Verissimo, B.A., 2009. The impact of temperature on biological aspects and life table of Rhopalosiphum padi (Hemiptera: Aphidiade) fed with signal grass. Fla. Entomol. 92, 568-576.
  3. Bale, J.S., Ponder, K.L., Pritchard, J., 2007. Coping with stress, pp. 287-309. In: H.F. Van Emden, R. Harrington (Eds.), Aphids as crop pests. CAB International, Wallingford, UK.
  4. Blackman, R.L., Eastop, V.F., 1985. Aphids on the world's crops: An identification guide, John Wiley & Sons, England, pp. 341-342.
  5. Choi, K.S., Kim, D.-S., 2016. Effect of temperature on the fecundity and longevity of Ascotis selenaria (Lepidoptera: Geometridae): developing an oviposition model. J. Econ. Entomol. 2016. 1-6 doi: 10.1093/jee/tow029.
  6. Curry, G.L., Feldman, R.M., 1987. Mathematical foundations of population dynamics. The Texas A&M University Press.
  7. Descamps, L.R., Chopa, C.S., 2011. Population growth of Rhopalosiphum padi L. (Homoptera: Aphididae) on different cereal crops from the semiarid pampas of Argentina under laboratory conditions. Chil. J. Agr. Res. 71, 390-394. https://doi.org/10.4067/S0718-58392011000300007
  8. Eastop, V.F., 1983. The biology of the principle virus vectors, in: Plumb, R.T., Thresh, J.M. (Eds.), Plant virus epidemiology. Blackvell Scientific Publication, Oxford, pp. 115-132.
  9. Emden van H.F., Harrington, R., 2007. Aphids as Crop Pests. CABI, USA.
  10. Erying, H., 1935. The activated complex in chemical reactions. J. Chem. Physics 3, 107-115. https://doi.org/10.1063/1.1749604
  11. Frazier, M.R., Huey, R.B., Berrigan, D., 2006. Thermodynamics constrains the evolution of insect population growth rates: "Warmer is better". Am. Nat. 168, 512-520. https://doi.org/10.1086/506977
  12. Ikemoto, T., Takai, K., 2000. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ. Entomol. 29, 671-682. https://doi.org/10.1603/0046-225X-29.4.671
  13. Jandel Scientific, 2002. Tabel curve 2D. Automated curve fitting and equation discovery; version 4.0. Dandel Scientific, San Rafel, CA.
  14. Kim, H.-J., 2008. A Systematic study of the tribe Aphidini (Hemiptera: Aphididae) in the Korean peninsula, with discussion of their phylogenetic relationships based on molecular markers and morphology. Seoul National University, Doctor Thesis.
  15. Kim, D.-S., Lee, J-H., Yiem, M.S. 2001. Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae), and its stage emergence models. Environ. Entomol. 30, 298-305. https://doi.org/10.1603/0046-225X-30.2.298
  16. Kim D.-S., Lee J.-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Eco. Model. 162, 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
  17. Kim, D.-S., Choi, K.S., Jang, Y.S., Song, J.H., 2009. The effects of elevated temperatures on the population phenology and abundance of citrus pests in Jeju, Korea. International Symposium on Climate Change and Insect Pest, Ramada Plaza Jeju Hotel, Jeju, Republic of Korea. pp. 28-30.
  18. Korea Biodiversity Information System (KBIS), N.D. Distribution map of Rhopalosiphum padi in Korea. http://www.nature.go.kr/kbi/insct/pilbk/selectInsctDistrList.do (accessed on 5 March, 2016).
  19. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  20. Lee, K.H., Shin, W.H., Kim, J.H., Lee, J.W., 1996. Mass rearing technology of Aphidus Colemani viereck (Hymenoptera: Aphidiidae) using Rhopalosiphum padi as a host aphid. Proceeding of KSAE (Korean Society of Applied Entomology) in 1996 (Autumn), pp. 65 (in Korean with title translated into English by the authors).
  21. Lee, R.E. Jr., 1991. Principle of insect low temperature tolerance, In: Lee, R.E. Jr., Denlinger, D.L. (Eds.), Insects at low temperature. Chapman and Hall, New York and London, pp. 17-46.
  22. Ma, G., Hoffmann, A.A., Ma, C.-S. 2015. Daily temperature extremes play an important role in predicting thermal effects. J. Exp. Bio. 218, 2289-2296. https://doi.org/10.1242/jeb.122127
  23. Macfadyen, S., Kriticos, D.J., 2012. Modelling the geographical range of a species with variable life-history. PLoS One 7(7), e40313. doi:10.1371/journal.pone.0040313.
  24. MAFF., 1982. Reference Book 186. Cereal pests. HMSO, London. 124 pp.
  25. Powell, S.J., Bale, J.S., 2005. Low temperature acclimatd population of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. J. Exp. Bio. 208, 2615-2620. https://doi.org/10.1242/jeb.01685
  26. SAS Institute, 1999 SAS $OnlinDoc^{(R)}$. Versin 8, SAS Institute Inc., Cary, NC. USA.
  27. Sengonca, V.C., Hoffmann, A., Kleinhenz, B., 1994. Laboruntersuchungen zur entwicklung, lebensdauer und fruchtbarkeit der getreideblattlausarten Sitobion avenae (F.) und Rhopalosiphum padi (L.) (Horn., Aphididae) bei verschiedenen tieferen temperaturen. J. Appl. Ent. 117, 224-233. https://doi.org/10.1111/j.1439-0418.1994.tb00729.x
  28. Song, J.H., Kang, S.H., Lee, K.S., Yiem, S.O., Han, W.T., 2000. Survey for the pest of major crops on Jeju Island. Final research report of Cheju Provincial Institute for Agricultural Research (in Korean with title translated into English by the authors).
  29. Taheri, S., Razmjou, J., Rastegari, N., 2010. Fecundity and development rate of the bird cherry-oat Aphid, Rhopalosiphum padi (L) (Hom.: Aphididae) on six wheat cultivars. Plant Protect. Sci. 46, 72-78. https://doi.org/10.17221/10/2009-PPS
  30. Villanueva, B., J.R., Strong, F.E., 1964. Laboratory Studies on the Biology of Rhopalosiphum padi (Homoptera: Aphidae). Ann. Entomol. Soc. Am. 57, 609-613. https://doi.org/10.1093/aesa/57.5.609
  31. Wagner, T.L., WU, H.-I., Sharpe, P.J.H., Coulson, R.N., 1984. Modeling Distributions of Insect Development Time: A Literature Review and Application of the Weibull Function. Ann. Entomol. Soc. Am. 77, 475-487. https://doi.org/10.1093/aesa/77.5.475
  32. Weibull, W.A., 1951. Statistical distribution function of wide applicability. J. Appl. Mech. 18, 293-196.

Cited by

  1. Thermal effects on the development, fecundity and life table parameters of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) on barley vol.20, pp.3, 2017, https://doi.org/10.1016/j.aspen.2017.05.004