DOI QR코드

DOI QR Code

Forecasting Brown Planthopper Infestation in Korea using Statistical Models based on Climatic tele-connections

기후 원격상관 기반 통계모형을 활용한 국내 벼멸구 발생 예측

  • Kim, Kwang-Hyung (Climate Research Department, APEC Climate Center) ;
  • Cho, Jeapil (Climate Research Department, APEC Climate Center) ;
  • Lee, Yong-Hwan (Disaster Management Division, Rural Development Administration)
  • Received : 2016.04.04
  • Accepted : 2016.05.12
  • Published : 2016.06.01

Abstract

A seasonal outlook for crop insect pests is most valuable when it provides accurate information for timely management decisions. In this study, we investigated probable tele-connections between climatic phenomena and pest infestations in Korea using a statistical method. A rice insect pest, brown planthopper (BPH), was selected because of its migration characteristics, which fits well with the concept of our statistical modelling - utilizing a long-term, multi-regional influence of selected climatic phenomena to predict a dominant biological event at certain time and place. Variables of the seasonal climate forecast from 10 climate models were used as a predictor, and annual infestation area for BPH as a predictand in the statistical analyses. The Moving Window Regression model showed high correlation between the national infestation trends of BPH in South Korea and selected tempo-spatial climatic variables along with its sequential migration path. Overall, the statistical models developed in this study showed a promising predictability for BPH infestation in Korea, although the dynamical relationships between the infestation and selected climatic phenomena need to be further elucidated.

작물 재배 시 주요 해충 발생에 대해 한두 달 이상 앞선 계절전망이 가능하다면 농가의 해충관리 의사결정이 보다 효율적으로 이루어질 수 있을 것이다. 본 연구에서는 국내 해충 발생과 통계적으로 유의미한 원격상관관계에 있는 기후현상을 찾기 위해 Moving Window Regression (MWR) 기법을 활용하였다. 벼멸구의 발생과 비래는 장기간에 걸쳐 여러 지역에서 연속적으로 일어나는 사건이기 때문에 비슷한 시공간적 규모를 갖는 기후현상과 통계적인 연관성을 가질 가능성이 높아 본 연구의 대상 해충으로 선택하였다. MWR 통계 분석의 반응변수로써 1983년부터 2014년까지 국내 벼멸구 발생면적 자료를 사용하였고, 10개의 기후모형에서 생산되는 10개의 기후변수를 예보 선행시간별로 추출하여 설명변수로 사용하였다. 최종적으로 선정된 각 MWR 모형의 특정 시기와 지역의 기후변수는 연간 벼멸구 발생면적 자료와 통계적으로 유의한 상관관계를 보였다. 결론적으로, 본 연구에서 개발한 MWR 통계 모형을 통해 국내 벼멸구 발생 위험도에 따른 선제적 대응을 위한 벼멸구 계절전망이 가능할 것으로 보인다.

Keywords

References

  1. Chang, C.-P., Zhang, Y., Li, T., 1999. Interannual and interdecadal variations of the East Asian summer monsoon and tropical pacific SSTs. Part II: Meridional structure of the monsoon. J. Climate 13, 4326-4340.
  2. Cho, J., 2014. Development of integrated methods for long-term water quantity and quality prediction using seasonal climate prediction. APCC Research Report 2015-13.
  3. Choi, G.M., 1998. Occurrence and control methods for brown planthopper and white backed planthopper. Rural Development Administration, Korea, 193pp. (In Korean)
  4. Choi, K.-S., Moon, I.-J. 2013. Two climate factors in May that affect Korean rainfall in September. Acta Oceanol. Sin. 32, 32-47. https://doi.org/10.1007/s13131-013-0265-9
  5. Hu, G., Lu, F., Zhai, B.-P., Lu, M.-H., Liu, W.-C., Zhu, F., et al., 2014. Outbreaks of the Brown Planthopper Nilaparvata lugens (Stal) in the Yangtze River Delta: Immigration or Local Reproduction? PLoS ONE 9, e88973. https://doi.org/10.1371/journal.pone.0088973
  6. Hyun, J.S., 1982. Meteorological condition and pest management. Korean J. Crop Sci. 27, 361-370.
  7. Kang, H., Park, C.-K., Hameed, S. N., Ashok, K., 2009. Statistical downscaling of precipitation in Korea using multimodel output variables as predictors. Mon. Weather Rev. 137, 1928-1938. https://doi.org/10.1175/2008MWR2706.1
  8. Kang, S., Hur, J., Ahn, J. B., 2014. Statistical downscaling methods based on APCC multi-model ensemble for seasonal prediction over South Korea. International J. Climatol. 34, 3801-3810. https://doi.org/10.1002/joc.3952
  9. Kim, M.-K., Kim, Y.-H., Lee, W.-S., 2007. Seasonal prediction of Korean regional climate from preceding large-scale climate indices. Int. J. Climatol. 27, 925-934. https://doi.org/10.1002/joc.1448
  10. Kim, M.-K., Kim, Y.-H., 2010. Seasonal prediction of monthly precipitation in China using large-scale climate indices. Adv. Atmos. Sci. 27, 47-59. https://doi.org/10.1007/s00376-009-8014-x
  11. Kim, Y.-H., Kim, M.-K., Lee, W.-S., 2008. An Investigation of Large-Scale Climate Indices with the influence on Temperature and Precipitation Variation in Korea. Atmosphere 18, 85-97.
  12. Kisimoto, R., Sogawa, K., 1995. Migration of the brown planthopper, Nilaparvata lugensand the white-backed planthopper Sogatella furcifera in East Asia: the role of weatherand climate, pp. 67-91. In V. A. Drake and A. G. Gatehouse (eds.), Insect migration: tracking resources through space and time. Cambridge University Press, Cambridge, UK.
  13. Lee, S.W., 2012. Moving simulation of migratory insects and surveillance system of their occurrence. Rural Development Administration, Korea, 73pp. (In Korean)
  14. Matsumura, M., Takeuchi, H., Satoh, M., Sanada-Morimura, S., Otuka, A., Watanabe, T., Van Thanh, D., 2009. Current status of insecticide resistance in rice planthoppers in Asia, In Heong KL, Hardy B, editors. 2009. Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. Los Banos (Philippines): International Rice Research Institute. pp 233-244.
  15. Otuka, A., 2013. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia. Front. Microbiol. 4, Article 309.
  16. Park, C.G., Hyun, J.S., 1983. Effects of temperatures and relative humidities on the development of brown planthopper, Nilaparvata lugens (Stal). Kor. J. Pl. Prot. 22, 262-270.
  17. Park, J.S., Park, K.T., Choi, K.R., Paik, J.C., 1975. Studies on the investigating method on migratory insects. Ann. Rept. Inst. Agric. Sci. 2, 85-91.
  18. Peng, Z., Wang, Q.J., Bennett, J.C., Pokhrel, P., Wang, Z., 2014. Seasonal precipitation forecasts over China using monthly largescale oceanic-atmospheric indices. J. Hydrol. 519, 792-802. https://doi.org/10.1016/j.jhydrol.2014.08.012
  19. RDA, 2010. Crop Diseases and Pests Monitoring Management Report (1979-2010). Rural Development Administration, Korea.
  20. Schepen, A., Wang, Q.J., Robertson, D., 2012. Evidence for using lagged climate indices to forecast Australian seasonal rainfall. J. Climate 25, 1230-1246. https://doi.org/10.1175/JCLI-D-11-00156.1
  21. Selvin, S., 2004. Statistical analysis of epidemiologic data (No. Ed. 3). Oxford University Press.
  22. Sidhu, G.S., Khush, G.S., 1978. Genetice analysis of brown planthopper resistance in twenty varieties of rice, Oryza sativa L. Theor. Appl. Genet. 53, 1999-2003.
  23. Sogawa, K., 1997. Overseas immigration of rice planthoppers into Japan and associatedmeteorological systems. pp. 13-35 in China National Rice Research Institute (Ed.) Proceedings of China-Japan Joint Workshop on "Migration and Management of Insect Pest of Rice in Monsoon Asia", November 27-29, 1997, Hangzhou, P.R. China.
  24. Song, Y., Lee, J.H., 2007. Studies on the prediction models for the outbreaks of the long range migratory planthoppers on rice. Rural Development Administration, Korea, 90pp.
  25. Stigter, J., 2012. Climate-smart agriculture can diminish planthopper outbreaks, but a number of bad habits are counterproductive. http://ricehoppers.net/2012/02/29/cimate-smart-agriculturecan-diminish-planthopper-outbreaks-but-a-number-of-bad-habitsare-counterproductive/ (accessed on 23 March, 2016).
  26. Trenberth, K.E., 1997. The definition of el nino. B. Am. Meteorol. Soc. 78, 2771-2777. https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
  27. Wu, Z., Wang, B., Li, J., Jin, F.-F., 2009. An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res. 114, D18120. https://doi.org/10.1029/2009JD011733
  28. Xiaoqing, X., Baoping, Z., Xiaoxi, Z., Xianian, C., Jianqiang, W., 2007. Teleconnection between the early immigration of brown planthopper (Nilaparvata lugens Stal) and ENSO indices: implication for its medium-and long-term forecast. Acta Ecol. Sin. 27, 3144-3154. https://doi.org/10.1016/S1872-2032(07)60069-9