DOI QR코드

DOI QR Code

Autonomous Mobile Robot Control using the Wearable Devices Based on EMG Signal for detecting fire

EMG 신호 기반의 웨어러블 기기를 통한 화재감지 자율 주행 로봇 제어

  • Kim, Jin-Woo (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Lee, Woo-Young (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Yu, Je-Hun (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Sim, Kwee-Bo (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 김진우 (중앙대학교 전자전기공학부) ;
  • 이우영 (중앙대학교 전자전기공학부) ;
  • 유제훈 (중앙대학교 전자전기공학부) ;
  • 심귀보 (중앙대학교 전자전기공학부)
  • Received : 2016.05.24
  • Accepted : 2016.06.01
  • Published : 2016.06.25

Abstract

In this paper, the autonomous mobile robot control system for detecting fire was proposed using the wearable device based on EMG(Electromyogram) signal. Myo armband is used for detecting the user's EMG signal. The gesture was classified after sending the data of EMG signal to a computer using Bluetooth communication. Then the robot named 'uBrain' was implemented to move by received data from Bluetooth communication in our experiment. 'Move front', 'Turn right', 'Turn left', and 'Stop' are controllable commands for the robot. And if the robot cannot receive the Bluetooth signal from a user or if a user wants to change manual mode to autonomous mode, the robot was implemented to be in the autonomous mode. The robot flashes the LED when IR sensor detects the fire during moving.

본 논문은 EMG(Electromyogram) 신호 기반의 웨어러블 기기를 이용하여 화재 감지 자율 주행 로봇을 제어하는 시스템을 제안하였다. 사용자의 EMG 신호를 읽어내기 위한 기기로는 Myo armband를 이용하였다. EMG 신호의 데이터를 블루투스 통신을 이용하여 컴퓨터로 전송한 후 동작을 분류하였다. 그 후 다시 블루투스를 이용하여 분류한 데이터 값을 uBrain 로봇으로 전송해 로봇이 움직일 수 있도록 구현하였다. 로봇을 조종 가능한 명령으로는 직진, 우회전, 좌회전, 정지를 구성하였다. 또한 로봇이 사용자로부터의 블루투스 신호를 받아오지 못하거나 사용자가 주행모드 변경의 명령을 내리면 로봇이 자율 주행을 하도록 하였다. 로봇이 주변을 돌아다니면서 적외선 센서로 화재를 감지하면 LED를 깜빡여 로봇 주변의 상황을 확인할 수 있도록 하였다.

Keywords

References

  1. M. R. Ahsan, M. I. Ibrahimy, and O. O. Khalifa, “EMG Signal Classification for Human Computer Interaction: A Review,” European Journal of Scientific Research, Vol. 33, No. 3, pp. 480-501, 2009.
  2. J. H. Yu, and K. B. Sim, “Robot Control based on Steady-State Visual Evoked Potential ising Arduino and Emotiv Epoc,” Journal of Korean Institute of Intelligent Systems, Vol. 25, No. 3, pp. 254-259, 2015. https://doi.org/10.5391/JKIIS.2015.25.3.254
  3. K. B. Sim, H. G. Yeom, and I. Y. Lee, “EEG Signals Measurement and Analysis Method for Brain-Computer Interface,” Journal of Korean Institute of Intelligent Systems, Vol. 18, No. 5, pp. 605-610, 2008. https://doi.org/10.5391/JKIIS.2008.18.5.605
  4. M. Duguleana and G. Mogan, "Using eye blinking for eogbased robot control," in Emerging Trends in Technological Innovation, 2010, pp. 343-350.
  5. B. I. Jeon, H. C. Cho, and H. T. Jeon, “The Implementation of the Intelligent Exoskeleton Robot Arm Using ElectroMiogram(EMG) vital Signa,” Journal of Korean Institute of Intelligent Systems, Vol. 22, No. 5, pp. 533-539, 2012. https://doi.org/10.5391/JKIIS.2012.22.5.533
  6. M. Sathiyanarayanan, T. Mulling, and B. Nazir, "Controlling a Robot Using a Wearable Device (MYO)," International Journal of Engineering Development and Research, Vol. 3, No. 3, 2015.
  7. Y. S. Moon, Y. N. Seo, N. Y. Ko, S. H. Roh, and J. P. Park, “Robot Design for Fire Detection and Data Processing,” The Journal of the Korea institute of electronic communication sciences, Vol. 5, No. 1, pp. 31-36, 2010.
  8. K. M. Jeong, J. K. Kang, G. H. Lee, S. U. Lee, Y. C. Seo, C. H. Choi, S. H. Jung, and S. H. Kim, “Development of a Robotic System for Searching Human Victims in Disasters,” Journal of Institute of Control, Robotics and Systems, Vol. 13, No. 2, pp. 114-120, 2007. https://doi.org/10.5302/J.ICROS.2007.13.2.114
  9. K. R. Kim, and J. T. Kim, "A Research of the Development Plan for a Highly Adaptable FSR (Fire Safety Robot) in the Scene of the Fire," Fire Science and Engineering, Vol. 24, No. 3, 2010.
  10. J. Y. Heo, G. T. Kang, and W. C. Lee, “Navigation of an Autonomous Mobile Robot with Vision and IR Sensors Using Fuzzy Rules,” Journal of Korean Institute of Intelligent Systems, Vol. 17, No. 7, pp. 901-906, 2007. https://doi.org/10.5391/JKIIS.2007.17.7.901
  11. I. K. Lee, and S. H. Kwon, “Ontology-based Control of Autonomous Robots,” Journal of Korean Institute of Intelligent Systems, Vol. 19, No. 1, pp. 69-74, 2009. https://doi.org/10.5391/JKIIS.2009.19.1.069
  12. Thalmic Labs. "Myo Gesture Control Armband," Available: https://www.myo.com/techspecs, 2015, [Accessed: February 26, 2016]
  13. Huins Inc. "uBrain," Available: http://huins.com/new/main/main.php, 1992, [Accessed: April 29, 2016]

Cited by

  1. Mobile Robot Control using Smart Phone for internet of Things vol.26, pp.5, 2016, https://doi.org/10.5391/JKIIS.2016.26.5.396