참고문헌
- H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, "Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential," Biomedical Engineering, IEEE Reviews in, vol. 7, pp. 97-114, 2014. https://doi.org/10.1109/RBME.2013.2295804
- J. A. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge university press, 1999, vol. 3.
- T. F. Chan and L. A. Vese, "Active contours without edges," Image processing, IEEE transactions on, vol. 10, no. 2, pp. 266-277, 2001. https://doi.org/10.1109/83.902291
- S. Arslan, T. Ersahin, R. Cetin-Atalay, and C. Gunduz-Demir, "Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images," Medical Imaging, IEEE Transactions on, vol. 32, no. 6, pp. 1121-1131, 2013. https://doi.org/10.1109/TMI.2013.2255309
- S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces. Springer Science & Business Media, 2006, vol. 153.
- L. Rueda Villegas, R. Alis, M. Lepilliez, and S. Tanguy, "A ghost fluid/level set method for boiling flows and liquid evaporation: Application to the leidenfrost effect," Journal of Computational Physics, vol. 316, pp. 789-813, 2016. https://doi.org/10.1016/j.jcp.2016.04.031
- A. Gharipour and A. W.-C. Liew, "Segmentation of cell nuclei in fluorescence microscopy images: An integrated framework using level set segmentation and touching-cell splitting," Pattern Recognition, vol. 58, pp. 1-11, 2016. https://doi.org/10.1016/j.patcog.2016.03.030
- Z. Lu, G. Carneiro, and A. P. Bradley, "An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells," Image Processing, IEEE Transactions on, vol. 24, no. 4, pp. 1261-1272, 2015. https://doi.org/10.1109/TIP.2015.2389619
- X. Qi, F. Xing, D. J. Foran, and L. Yang, "Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set," Biomedical Engineering, IEEE Transactions on, vol. 59, no. 3, pp. 754-765, 2012. https://doi.org/10.1109/TBME.2011.2179298
- F. Xing and L. Yang, "Fast cell segmentation using scalable sparse manifold learning and affine transform-approximated active contour," in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Springer, 2015, pp. 332-339.
- M. Aharon, M. Elad, and A. Bruckstein, "K-svd: An algorithm for designing of overcomplete dictionaries for sparse representation technion-israel inst. of technology, 2005," Tech. Ref.
- D. L. Donoho, "Compressed sensing," Information Theory, IEEE Transactions on, vol. 52, no. 4, pp. 1289-1306, 2006. https://doi.org/10.1109/TIT.2006.871582
- M. Elad and M. Aharon, "Image denoising via learned dictionaries and sparse representation," in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1. IEEE, 2006, pp. 895-900.
- M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional networks," in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 2528-2535.
- H. Bristow, A. Eriksson, and S. Lucey, "Fast convolutional sparse coding," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 391-398.
- B. Wohlberg, "Efficient convolutional sparse coding," in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp. 7173-7177.
- B.Wohlberg, "Efficient algorithms for convolutional sparse representations," Image Processing, IEEE Transactions on, vol. 25, no. 1, pp. 301-315, 2016. https://doi.org/10.1109/TIP.2015.2495260
- F. Heide, W. Heidrich, and G. Wetzstein, "Fast and flexible convolutional sparse coding," in Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on. IEEE, 2015, pp. 5135-5143.
- S. Bahrampour, N. M. Nasrabadi, A. Ray, and W. K. Jenkins, "Multimodal task-driven dictionary learning for image classification," Image Processing, IEEE Transactions on, vol. 25, no. 1, pp. 24-38, 2016. https://doi.org/10.1109/TIP.2015.2496275
- R. Annunziata and E. Trucco, "Accelerating convolutional sparse coding for curvilinear structures segmentation by refining scird-ts filter banks," 2016.
- Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: Convolutional architecture for fast feature embedding," arXiv preprint arXiv:1408.5093, 2014.
- A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng, J. Pulokas, P. Tomancak, and V. Hartenstein, "An integrated micro- and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy," PLoS Biology, vol. 8, no. 10, p. e1000502, oct 2010. [Online]. Available: http://dx.doi.org/10.1371/journal.pbio.1000502
- T. Tong, R. Wolz, P. Coupe, J. V. Hajnal, D. Rueckert, A. D. N. Initiative, et al., "Segmentation of mr images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling," NeuroImage, vol. 76, pp. 11-23, 2013. https://doi.org/10.1016/j.neuroimage.2013.02.069