개념적 수문모형의 불확실성과 이에 대한 조사방법

  • Published : 2016.06.15

Abstract

Keywords

References

  1. Andrews, F. T., Croke, B. F., & Jakeman, A. J. (2011). An open software environment for hydrological model assessment and development. Environmental Modelling & Software, 26(10), 1171-1185. https://doi.org/10.1016/j.envsoft.2011.04.006
  2. Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of hydrology, 249(1), 11-29. https://doi.org/10.1016/S0022-1694(01)00421-8
  3. Box, G. E. P., & Draper, N. R., (1987). Empirical Model-building and Response Surfaces. John Wiley and Sons, New York.
  4. Burnash, R. J. C., Ferral, R. L., & McGuire, R. A. (1973). A Generalized Streamflow Simulation System: Conceptual Modeling for Digital Computers. Technical Report. U.S. Natl. Weather Serv., Sacramento, Calif.
  5. Chiew, F. H. S., Peel, M. C., & Western, A. W. (2002). Application and testing of the simple rainfall-runoff model SIMHYD. In: Singh, V. P., Frevert, D. K. (Eds.), Mathematical Models of Small Watershed Hydrology and Applications. Water Resour. Publ., Colorado, pp. 335-367.
  6. Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., ... & Hay, L. E. (2008). Framework for Understanding Structural Errors(FUSE): A modular framework to diagnose differences between hydrological models. Water Resources Research, 44(12).
  7. Croke, B. F., & Jakeman, A. J. (2004). A catchment moisture deficit module for the IHACRES rainfall-runoff model. Environmental Modelling & Software, 19(1), 1-5. https://doi.org/10.1016/j.envsoft.2003.09.001
  8. Jakeman, A. J., & Hornberger, G. M. (1993). How much complexity is warranted in a rainfall?runoff model?. Water resources research, 29(8), 2637-2649. https://doi.org/10.1029/93WR00877
  9. Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161-174. https://doi.org/10.1080/00401706.1991.10484804
  10. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I-A discussion of principles. Journal of hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  11. Perrin, C. (2000). Towards an Improvement of a Lumped Rainfall?Runoff Model through a Comparative Approach. Ph.D. Thesis, Univ. Joseph Fourier, Grenoble, France.
  12. Shin, M. J., Guillaume, J. H., Croke, B. F. , & Jakeman, A. J. (2013). Addressing ten questions about conceptual rainfall?runoff models with global sensitivity analyses in R. Journal of Hydrology, 503, 135-152.
  13. Shin, M. J., Guillaume, J. H., Croke, B. F., & Jakeman, A. J. (2015). A review of foundational methods for checking the structural identifiability of models: Results for rainfall-runoff. Journal of Hydrology, 520, 1-16.
  14. Smith, M. B., Koren, V., Zhang, Z., Zhang, Y., Reed, S. M., Cui, Z., ... & Anderson, E. A. (2012). Results of the DMIP 2 Oklahoma experiments. Journal of Hydrology, 418, 17-48.
  15. Sobol, I. M. (1993). Sensitivity analysis for nonlinear mathematical models. Math. Model. Comput. Exp. 1 (4), 407-414.
  16. Vrugt, J. A., Ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman, J. M., & Higdon, D. (2009). Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical Simulation, 10(3), 273-290. https://doi.org/10.1515/ijnsns.2009.10.3.273
  17. Wagener, T., McIntyre, N., Lees, M. J., Wheater, H. S., & Gupta, H. V. (2003). Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis. Hydrological Processes, 17(2), 455-476. https://doi.org/10.1002/hyp.1135