DOI QR코드

DOI QR Code

Electrospun Magnetic Nanofiber as Multifunctional Flexible EMI-Shielding Layer and its Optimization on the Effectiveness

  • Yu, Jiwoo (Department of Materials Science and Engineering, Seoul National University) ;
  • Nam, Dae-Hyun (Department of Materials Science and Engineering, Seoul National University) ;
  • Lee, Young-Joo (Department of Materials Science and Engineering, Seoul National University) ;
  • Joo, Young-Chang (Department of Materials Science and Engineering, Seoul National University)
  • Received : 2016.05.24
  • Accepted : 2016.06.16
  • Published : 2016.06.30

Abstract

We developed a flexible and micro-thick electromagnetic interference (EMI) shielding nanofabric layer that also functions as a water resisting and heat sinking material. Electrospinning followed by a simple heat treatment process was carried on to produce the EMI-shielding Ni/C hybrid nanofibers. The ambient oxygen partial pressure ($pO_2$ = 0.1, 0.7, 1.3 Torr) applied during the heat treatment was varied in order to optimize the effectiveness of EMI-shielding by modifying the size and crystallinity of the magnetic Ni nanoparticles distributed throughout the C nanofibers. Permittivity and permeability of the nanofibers under the electromagnetic (EM) wave frequency range of 300 MHz~1 GHz were measured, which implied the EMI-shielding effectiveness (SE) optimization at $pO_2$ = 0.7 Torr during the heat treatment. The materials' heat diffusivity for both in-plane direction and vertical direction was measured to confirm the anisotropic thermal diffusivity that can effectively deliver and sink the local heat produced during device operations. Also, the nanofibers were aged at room temperature in oxygen ambient for water resisting function.

Keywords

References

  1. J.-H. Ahn, H. Lee and S.-H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013).
  2. O. Erogul, E. Oztas, I. Yildirim, T. Kir, E. Aydur, G. Komesli, H. C. Irkilata, M. K. Irmak and A. F. Peker, "Effects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro study", Arch. Med. Res., 37(7), 840 (2006). https://doi.org/10.1016/j.arcmed.2006.05.003
  3. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu and J. A. Rogers, "Stretchable and foldable silicon integrated circuits", Science, 320(5875), 507 (2008). https://doi.org/10.1126/science.1154367
  4. J.-H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45(10), 103001 (2012). https://doi.org/10.1088/0022-3727/45/10/103001
  5. J. A. Rogers, T. Someya and Y. Huang, "Materials and mechanics for stretchable electronics", Science, 327(5973), 1603 (2010). https://doi.org/10.1126/science.1182383
  6. D.-H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20(24), 4887 (2008). https://doi.org/10.1002/adma.200801788
  7. D. D. L. Chung, "Materials for Electromagnetic Interference Shielding", J. Mater. Eng. Perform., 9(3), 350 (2000). https://doi.org/10.1361/105994900770346042
  8. M. H. Al-Saleh and U. Sundararaj, "Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites", Carbon, 47(7), 1738 (2009). https://doi.org/10.1016/j.carbon.2009.02.030
  9. G. Hartsgrove, A. Kraszewski and A. Surowiec, "Simulated biological materials for electromagnetic radiation absorption studies", Bioelectromagnetics, 8(1), 29 (1987). https://doi.org/10.1002/bem.2250080105
  10. S. W. Phang, M. Tadokoro, J. Watanabe and N. Kuramoto, "Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing $TiO_2$ nanoparticles and carbon nanotubes", Synt. Met., 158(6), 251 (2008). https://doi.org/10.1016/j.synthmet.2008.01.012
  11. E. Kim, D. Y. Lim, Y. Kang and E. Yoo, "Fabrication of a stretchable electromagnetic interference shielding silver nanoparticle/elastomeric polymer composite", RSC Adv., 6(57), 52250 (2016). https://doi.org/10.1039/C6RA04765C
  12. S. K. Dhawan, N. Singh and S. Venkatachalam, "Shielding behaviour of conducting polymer-coated fabrics in X-band, W-band and radio frequency range", Synt. Met., 129(3), 261 (2002). https://doi.org/10.1016/S0379-6779(02)00079-6
  13. T. Makela, S. Pienimaa, T. Taka, S. Jussila and H. Isotalo, "Thin Polyaniline Films in EMI Shielding", Synt. Met., 85(1-3), 1335 (1997). https://doi.org/10.1016/S0379-6779(97)80259-7
  14. Y. Wang and X. Jing, "Intrinsically conducting polymers for electromagnetic interference shielding", Polym. Adv. Technol., 16(4), 344 (2005). https://doi.org/10.1002/pat.589
  15. K.-S. Kim, D.-H. Choi and S.-B. Jung, "Overview on Thermal Management Technology for High Power Device Packaging", J. Microelectron. Packag. Soc., 21(2), 13 (2014).
  16. K.-S. Kim, D.-H. Choi and S.-B. Jung, "Overview on Thermal Management Technology for High Power Device Packaging", J. Microelectron. Packag. Soc., 21(2), 13 (2014).
  17. S. Kim and T.-S. Kim, "Adhesion Reliability Enhancement of Silicon/Epoxy/Polyimide Interfaces for Flexible Electronics", J. Microelectron. Packag. Soc., 19(3), 63 (2012). https://doi.org/10.6117/kmeps.2012.19.3.063
  18. D.-H. Nam, J.-H. Lee, N.-R. Kim, Y.-Y. Lee, H.-W. Yeon, S.-Y. Lee and Y.-C. Joo, "One-step structure modulation of electrospun metal-loaded carbon nanofibers: Redox reaction controlled calcination", Carbon, 82, 273 (2015). https://doi.org/10.1016/j.carbon.2014.10.071
  19. A. Tuteja, W. Choi, G. H. McKinley, R. E. Cohen and M. F. Rubner, "Design Parameters for Superhydrophobicity and Superoleophobicity", MRS Bulletin, 33(08), 752 (2011). https://doi.org/10.1557/mrs2008.161

Cited by

  1. MLCC를 이용한 SMPS의 EMI 저감 설계 vol.27, pp.4, 2016, https://doi.org/10.6117/kmeps.2020.27.4.097
  2. A review on electrospun magnetic nanomaterials: methods, properties and applications vol.9, pp.29, 2016, https://doi.org/10.1039/d1tc01477c