참고문헌
- W. S. Basca, "A Theorist's Pencil and One Layer of Carbon Atoms, Graphene", from http://www.scitizen.com (2007).
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
- A. K. Geim and K. S. Novoselov, "The rise of graphene", Nature, 6, 183 (2007). https://doi.org/10.1038/nmat1849
- C. Lee, X. Wei, J. W. Kysar and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
- S. H. Lee , D. H. Lee , W. J. Lee and S. O. Kim, "Tailored Assembly of Carbon Nanotubes and Graphene", Adv. Funct. Mater., 21, 1338 (2011). https://doi.org/10.1002/adfm.201002048
- K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, "A roadmap for graphene", Nature, 490, 192 (2012). https://doi.org/10.1038/nature11458
- D. R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, "Experimental Review of Graphene", Condens. Matter Phys., 2012, 1 (2012).
- V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, "Graphene based materials: Past, present and future", Mater. Sci., 56, 1178 (2011).
- J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, "Practical Chemical Sensors from Chemically Derived Graphene," ACS Nano, 3, 301 (2009). https://doi.org/10.1021/nn800593m
- R. Prasher, "Graphene Spreads the Heat," Science, 328, 185 (2010). https://doi.org/10.1126/science.1188998
- T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim and J. H. Lee, "Recent Advances in Graphene-based Biosensors," Biosens. Bioelectron., 26, 4637 (2011). https://doi.org/10.1016/j.bios.2011.05.039
- Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong and J. H. Ahn, "Wafer-Scale Synthesis and Transfer of Graphene Films", Nano Lett., 10, 490 (2010). https://doi.org/10.1021/nl903272n
- Q. Wu, Y. Xu, Z. Yao, A. Liu and G. Shi, "Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films", ACS Nano, 4, 1963 (2010). https://doi.org/10.1021/nn1000035
- H. Kim, A. A. Abdala and C. W. Macosko, "Graphene/Polymer Nanocomposites", Macromolecules, 43, 6515 (2010). https://doi.org/10.1021/ma100572e
- A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander and J. Kinaret, "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", Nanoscale, 7, 4598 (2015). https://doi.org/10.1039/C4NR01600A
- J. H. Lau, "Low Cost Flip Chip Technologies: for DCA, WLCSP, and PBGA assemblies", pp.1-2, McGraw-Hill, New York (2000).
- S. K. Kang and A. K. Sarkhel, "(Pb)-Free Solders for Electronic Packaging", J. Electron. Mater., 23(8), 701 (1994). https://doi.org/10.1007/BF02651362
- M. Abtew and G. Selvaduray, "Lead-free Solders in Microelectronics", Mater. Sci. Eng. R, 27(5), 95 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3
- A. Sharma, H. R. Sohn and J. P. Jung, "Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy", Metall. Mater. Trans. A, 47A, 494 (2016).
- L. C. Tsao, "Suppressing effect of 0.5 wt.% nano-TiO2 addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging", J. Alloys Compd., 509, 8441 (2011). https://doi.org/10.1016/j.jallcom.2011.05.116
-
A. K. Gain, Y. C. Chan and W. K. C. Yung, "Effect of additions of
$ZrO_2$ nano-particles on the microstructure and shear strength of Sn-Ag-Cu solder on Au/Ni metallized Cu pads", Microelectron. Reliab., 51, 2306 (2011). https://doi.org/10.1016/j.microrel.2011.03.042 - M. G. Cho, S. K. Kang, D. Y. Shin and H. M. Lee, "Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging", J. Electron. Mater., 36(11), 1501 (2007). https://doi.org/10.1007/s11664-007-0254-x
- X. D. Liu, Y. D. Han, H. Y. Jing, J. Wei and L. Y. Xu, "Effect of graphene nanosheets reinforcement on the performance of Sn-Ag-Cu lead-free solder", Mater. Sci. Eng. A, 562, 25 (2013). https://doi.org/10.1016/j.msea.2012.10.079
- M. Sobhy, A. M. El-Refai and A. Fawzy, "Effect of Graphene Oxide Nano-Sheets (GONSs) on thermal, microstructure and stress-strain characteristics of Sn-5 wt% Sb-1 wt% Ag solder alloy", J. Mater. Sci.: Mater. Electron., 27, 2349 (2016). https://doi.org/10.1007/s10854-015-4032-x
- L. Xu, L. Wang, H. Jing, X. Liu, J. Wei and Y. Han, "Effects of graphene nanosheets on interfacial reaction of Sn-Ag-Cu solder joints", J. Alloys Compd., 650, 475 (2015). https://doi.org/10.1016/j.jallcom.2015.08.018
- D. Ma and P. Wu, "Improved microstructure and mechanical properties for Sn58Bi0.7Zn solder joint by addition of graphene nanosheets", J. Alloys. Compd., 671, 127 (2016). https://doi.org/10.1016/j.jallcom.2016.02.093
- X. Hua, Y. C. Chan, K. Zhang and K. C. Yung, "Effect of graphene doping on microstructural and mechanical properties of Sn-8Zn-3Bi solder joints together with electromigration analysis", J. Alloys. Compd., 580, 162 (2013). https://doi.org/10.1016/j.jallcom.2013.05.124
- L. Y. Xu, Z. K. Zhang, H. Y. Jing, J. Wei and Y. D. Han, "Effect of graphene nanosheets on the corrosion behavior of Sn-Ag-Cu solders", J. Mater Sci: Mater. Electron., 26, 5625 (2015). https://doi.org/10.1007/s10854-015-3112-2
- S. W. Jeong, J. H. Kim and H. M. Lee, "Effect of Cooling Rate on Growth of the Intermetallic Compound and Fracture Mode of Near-Eutectic Sn-Ag-Cu/Cu Pad: Before and After Aging", J. Electron. Mater., 33(12), 1530 (2004). https://doi.org/10.1007/s11664-004-0095-9
- H. K. Lee, M. H. Chun, Y. C. Chu and K. S. Oh, "A Study of Joint Reliability According to Various Cu Contents between Electrolytic Ni and Electroless Ni Pad Finish", J. Microelectron. Packag. Soc., 22(3), 51 (2015). https://doi.org/10.6117/kmeps.2015.22.3.051
- S. H. Huh, J. H. Lee and S. J. Ham, "Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 1. Effects of thickness and roughness of electroless Ni-P deposit", J. Microelectron. Packag. Soc., 21(3), 43 (2014). https://doi.org/10.6117/kmeps.2014.21.3.043
- T. Y. Lee, K. H. Kim, J. H. Bang, N. S. Park, M. S. Kim and S. Yoo, "Sn-Ag-Cu Solder Joint Properties on Plasma Coated Organic Surface Finishes and OSP", J. Microelectron. Packag. Soc., 21(3), 25 (2014). https://doi.org/10.6117/kmeps.2014.21.3.025
- Y. C. Sohn, J. Yu, S. K. Kang, D. Y. Shih and T. Y. Lee, "Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization", J. Mater. Res., 19(8), 2428 (2004). https://doi.org/10.1557/JMR.2004.0297
- A. Sharif and Y. C. Chan, "Investigation of interfacial reactions between Sn-Zn solder with electrolytic Ni and electroless Ni(P) metallization", J. Alloys Compd., 440, 117 (2007). https://doi.org/10.1016/j.jallcom.2006.09.020
- C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, "Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni", J. Electron. Mater., 31(6), 584 (2002). https://doi.org/10.1007/s11664-002-0129-0
- Y. K. Jee, Y. H. Ko and J. Yu, "Effect of Zn on the intermetallics formation and reliability of Sn-3.5Ag solder on a Cu pad", J. Mater. Res., 22(7), 1879 (2007). https://doi.org/10.1557/jmr.2007.0234
- Y. K. Jee, Y. H. Ko and J. Yu, "Effects of Zn addition on the drop reliability of Sn-3.5Ag-xZn/Ni(P) solder joints", J. Mater. Res., 22(10), 2776 (2007). https://doi.org/10.1557/JMR.2007.0346
- Y. M. Kim, K. M. Harr and Y. H. Kim, "Mechanism of the Delayed Growth of Intermetallic Compound at the Interface between Sn-4.0Ag-0.5Cu and Cu-Zn Substrate", Electron. Mater. Lett., 6(4), 151 (2010). https://doi.org/10.3365/eml.2010.12.151
- Y. H. Ko, J. D. Lee, T. Yoon, C. W. Lee and T. S. Kim, "Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene", ACS Appl. Mater. Interfaces, 8, 5679 (2016). https://doi.org/10.1021/acsami.5b11903
- K. Lee, K. S. Kim and K. Suganuma, "Electro-migration Phenomenon in Flip-chip Packages", J. Microelectron. Packag. Soc., 17(4), 11 (2010).
- J. H. Bong, S. J. Yoon, A. Yoon, W. S. Hwang and B. J. Cho, "Ultrathin graphene and graphene oxide layers as a diffusion barrier for advanced Cu metallization", Appl. Phys. Lett., 106, 0632112 (2015).
- C. G. Kang, S. K. Lim, S. Lee, S. K. Lee, C. Cho, Y. G. Lee, H. J. Hwang, Y. Kim, H. J. Choi, S. H. Choe, M. H. Ham and B. H. Lee, "Effects of multi-layer graphene capping on Cu interconnects", Nanotechnology, 24, 115707 (2013). https://doi.org/10.1088/0957-4484/24/11/115707
- S. J. Yoon, A. Yoon, W. S. Hwang, S. Y. Choi and B. J. Cho, "Improved Electromigration-Resistance of Cu Interconnects by Graphene-Based Capping Layer", Proc. 2015 Symposium on VLSI Technology, Kyoto, T124, IEEE (2015).
- C. P. Wong, J. Xu, L. Zhu, Y. Li, H. Jiang, Y. Sun, J. Lu and H. Dong, "Recent Advances on Polymers and Polymer Nanocomposites for Advanced Electronic Packaging Applications", Proc. 2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, Shanghai, 1, IEEE (2005).
- J. Kim, B. S. Yim, J. M. Kim and J. Kim, "The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs)", Microelectron. Reliab., 52, 595 (2012). https://doi.org/10.1016/j.microrel.2011.11.002
- N. W. Pu, Y. Y. Peng, P. C. Wang, C. Y. Chen, J. N. Shi, Y. M. Liu, M. D. Ger and C. L. Chang, "Application of nitrogendoped graphene nanosheets in electrically conductive adhesives", Carbon, 67, 449 (2014). https://doi.org/10.1016/j.carbon.2013.10.017
- S. A. Ju, K. Kim, J. H. Kim and S. S. Lee, "Graphene-Wrapped Hybrid Spheres of Electrical Conductivity", ACS Appl. Mater. Interfaces, 3, 2904 (2011). https://doi.org/10.1021/am200056t
- K. M. F. Shahil and A. A. Balandin, "Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials", Solid State Commun., 152, 1331 (2012). https://doi.org/10.1016/j.ssc.2012.04.034
- K. M. F. Shahil and A. A. Balandin, "Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials", Nano Lett., 12(2), 861 (2012). https://doi.org/10.1021/nl203906r
- X. Zhang, K. K. Yeung, Z. Gao, J. Li, H. Sun, H. Xu, K. Zhang. M. Zhang, Z. Chen, M. M. F. Yuen and S. Yang, "Exceptional thermal interface properties of a three-dimensional graphene foam", Carbon, 66, 201 (2014). https://doi.org/10.1016/j.carbon.2013.08.059
- W. P. S. Saw and M. Mariatti, "Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications", J. Mater. Sci.: Mater. Electron., 23, 817 (2012). https://doi.org/10.1007/s10854-011-0499-2
- Z. Gao, Y. Zhang, Y. Fu, M. M. F. Yuen and J. Liu, "Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots", Carbon, 61, 342 (2013). https://doi.org/10.1016/j.carbon.2013.05.014
피인용 문헌
- Characterization of Copper-Graphite Composites Fabricated via Electrochemical Deposition and Spark Plasma Sintering vol.9, pp.14, 2016, https://doi.org/10.3390/app9142853
- Development and Characteristics of Multipurpose Transparent Polyurethane Film vol.21, pp.10, 2016, https://doi.org/10.1166/jnn.2021.19445