References
- Warburg, O. (1915) Notizen zur Entwickelungsphysiologie des Seeigeleies. Arch. f. d. ges. Physiol., 160, 324-332. https://doi.org/10.1007/BF01680970
- Warburg, O. (1923) Versuche an uberlebendem Carcinom-Gewebe (Methoden). Biochem. Zeitschr., 142, 317-333.
- Warburg, O. (1924) Verbesserte Methode zur Messung der Atmung und Glykolyse. Biochem. Zeitschr., 152, 51-63.
- Warburg, O. (1956) On the origin of cancer cells. Science, 123, 309-314. https://doi.org/10.1126/science.123.3191.309
- Warburg, O. (1956) On respiratory impairment in cancer cells. Science, 124, 269-270.
- Chance, B. and Castor, L.N. (1952) Some patterns of the respiratory pigments of ascites tumors of mice. Science, 116, 200-202. https://doi.org/10.1126/science.116.3008.200
- Weinhouse, S. (1956) On respiratory impairment in cancer cells. Science, 124, 267-269. https://doi.org/10.1126/science.124.3215.267
- Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
- Yeung, S.J., Pan, J. and Lee, M.H. (2008) Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell. Mol. Life Sci., 65, 3981-3999. https://doi.org/10.1007/s00018-008-8224-x
- Gatenby, R.A. and Gillies, R.J. (2004) Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 4, 891-899. https://doi.org/10.1038/nrc1478
- Brand, K.A. and Hermfisse, U. (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J., 11, 388-395. https://doi.org/10.1096/fasebj.11.5.9141507
- Spitz, D.R., Sim, J.E., Ridnour, L.A., Galoforo, S.S. and Lee, Y.J. (2000) Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann. N. Y. Acad. Sci., 899, 349-362.
- Elf, S.E. and Chen, J. (2014) Targeting glucose metabolism in patients with cancer. Cancer, 120, 774-780. https://doi.org/10.1002/cncr.28501
- Hamanaka, R.B. and Chandel, N.S. (2009) Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol., 21, 894-899. https://doi.org/10.1016/j.ceb.2009.08.005
- Hatefi, Y. (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem., 54, 1015-1069. https://doi.org/10.1146/annurev.bi.54.070185.005055
- Boguski, M.S., Lowe, T.M. and Tolstoshev, C.M. (1993) dbEST--database for "expressed sequence tags". Nat. Genet., 4, 332-333. https://doi.org/10.1038/ng0893-332
- Altenberg, B. and Greulich, K.O. (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics, 84, 1014-1020. https://doi.org/10.1016/j.ygeno.2004.08.010
- Nachmansohn, D. (1979) German-Jewish Pioneers in Science, Springer, New York, pp. 1900-1933.
- Koppenol, W.H., Bounds, P.L. and Dang, C.V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer, 11, 325-337. https://doi.org/10.1038/nrc3038
- Parsons, D.W., Jones, S., Zhang, X., Lin, J.C., Leary, R.J., Angenendt, P., Mankoo, P., Carter, H., Siu, I.M., Gallia, G.L., Olivi, A., McLendon, R., Rasheed, B.A., Keir, S., Nikolskaya, T., Nikolsky, Y., Busam, D.A., Tekleab, H., Diaz, L.A., Jr., Hartigan, J., Smith, D.R., Strausberg, R.L., Marie, S.K., Shinjo, S.M., Yan, H., Riggins, G.J., Bigner, D.D., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V.E. and Kinzler, K.W. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science, 321, 1807-1812. https://doi.org/10.1126/science.1164382
- Bayley, J.P. and Devilee, P. (2010) Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? Curr. Opin. Genet. Dev., 20, 324-329. https://doi.org/10.1016/j.gde.2010.02.008
- Baysal, B.E., Willett-Brozick, J.E., Lawrence, E.C., Drovdlic, C.M., Savul, S.A., McLeod, D.R., Yee, H.A., Brackmann, D.E., Slattery, W.H., 3rd, Myers, E.N., Ferrell, R.E. and Rubinstein, W.S. (2002) Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. J. Med. Genet., 39, 178-183. https://doi.org/10.1136/jmg.39.3.178
- Baysal, B.E. (2007) A recurrent stop-codon mutation in succinate dehydrogenase subunit B gene in normal peripheral blood and childhood T-cell acute leukemia. PLoS ONE, 2, e436. https://doi.org/10.1371/journal.pone.0000436
- Tomlinson, I.P., Alam, N.A., Rowan, A.J., Barclay, E., Jaeger, E.E., Kelsell, D., Leigh, I., Gorman, P., Lamlum, H., Rahman, S., Roylance, R.R., Olpin, S., Bevan, S., Barker, K., Hearle, N., Houlston, R.S., Kiuru, M., Lehtonen, R., Karhu, A., Vilkki, S., Laiho, P., Eklund, C., Vierimaa, O., Aittomaki, K., Hietala, M., Sistonen, P., Paetau, A., Salovaara, R., Herva, R., Launonen, V., Aaltonen, L.A. and Multiple Leiomyoma Consortium (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet., 30, 406-410. https://doi.org/10.1038/ng849
- Semenza, G.L. (2012) Hypoxia-inducible factors in physiology and medicine. Cell, 148, 399-408. https://doi.org/10.1016/j.cell.2012.01.021
- Martin-Puig, S., Temes, E., Olmos, G., Jones, D.R., Aragones, J. and Landazuri, M.O. (2004) Role of iron (II)-2-oxoglutarate-dependent dioxygenases in the generation of hypoxia-induced phosphatidic acid through HIF-1/2 and von Hippel-Lindau-independent mechanisms. J. Biol. Chem., 279, 9504-9511. https://doi.org/10.1074/jbc.M310658200
- Chen, H. and Costa, M. (2009) Iron- and 2-oxoglutaratedependent dioxygenases: an emerging group of molecular targets for nickel toxicity and carcinogenicity. Biometals, 22, 191-196. https://doi.org/10.1007/s10534-008-9190-3
- Isaacs, J.S., Jung, Y.J., Mole, D.R., Lee, S., Torres-Cabala, C., Chung, Y.L., Merino, M., Trepel, J., Zbar, B., Toro, J., Ratcliffe, P.J., Linehan, W.M. and Neckers, L. (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell, 8, 143-153. https://doi.org/10.1016/j.ccr.2005.06.017
- King, A., Selak, M.A. and Gottlieb, E. (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene, 25, 4675-4682. https://doi.org/10.1038/sj.onc.1209594
- Goda, N. and Kanai, M. (2012) Hypoxia-inducible factors and their roles in energy metabolism. Int. J. Hematol., 95, 457-463. https://doi.org/10.1007/s12185-012-1069-y
- Kim, J.W., Tchernyshyov, I., Semenza, G.L. and Dang, C.V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab., 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
- Semenza, G.L., Roth, P.H., Fang, H.M. and Wang, G.L. (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem., 269, 23757-23763.
- Gordan, J.D., Thompson, C.B. and Simon, M.C. (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 12, 108-113. https://doi.org/10.1016/j.ccr.2007.07.006
- Selak, M.A., Armour, S.M., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., Pan, Y., Simon, M.C., Thompson, C.B. and Gottlieb, E. (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7, 77-85. https://doi.org/10.1016/j.ccr.2004.11.022
- Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.H., Ito, S., Yang, C., Wang, P., Xiao, M.T., Liu, L.X., Jiang, W.Q., Liu, J., Zhang, J.Y., Wang, B., Frye, S., Zhang, Y., Xu, Y.H., Lei, Q.Y., Guan, K.L., Zhao, S.M. and Xiong, Y. (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell, 19, 17-30. https://doi.org/10.1016/j.ccr.2010.12.014
- Matoba, S., Kang, J.G., Patino, W.D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P.J., Bunz, F. and Hwang, P.M. (2006) p53 regulates mitochondrial respiration. Science, 312, 1650-1653. https://doi.org/10.1126/science.1126863
- Capuano, F., Guerrieri, F. and Papa, S. (1997) Oxidative phosphorylation enzymes in normal and neoplastic cell growth. J. Bioenerg. Biomembr., 29, 379-384. https://doi.org/10.1023/A:1022402915431
- Lopez-Rios, F., Sanchez-Arago, M., Garcia-Garcia, E., Ortega, A.D., Berrendero, J.R., Pozo-Rodriguez, F., Lopez-Encuentra, A., Ballestin, C. and Cuezva, J.M. (2007) Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res., 67, 9013-9017. https://doi.org/10.1158/0008-5472.CAN-07-1678
- Reitman, Z.J. and Yan, H. (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J. Natl. Cancer Inst., 102, 932-941. https://doi.org/10.1093/jnci/djq187
- Gross, S., Cairns, R.A., Minden, M.D., Driggers, E.M., Bittinger, M.A., Jang, H.G., Sasaki, M., Jin, S., Schenkein, D.P., Su, S.M., Dang, L., Fantin, V.R. and Mak, T.W. (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med., 207, 339-344. https://doi.org/10.1084/jem.20092506
-
Zhao, S., Lin, Y., Xu, W., Jiang, W., Zha, Z., Wang, P., Yu, W., Li, Z., Gong, L., Peng, Y., Ding, J., Lei, Q., Guan, K.L. and Xiong, Y. (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1
${\alpha}$ . Science, 324, 261-265. https://doi.org/10.1126/science.1170944 - Cavalli, L.R., Varella-Garcia, M. and Liang, B.C. (1997) Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth Differ., 8, 1189-1198.
- Tan, A.S., Baty, J.W., Dong, L.F., Bezawork-Geleta, A., Endaya, B., Goodwin, J., Bajzikova, M., Kovarova, J., Peterka, M., Yan, B., Pesdar, E.A., Sobol, M., Filimonenko, A., Stuart, S., Vondrusova, M., Kluckova, K., Sachaphibulkij, K., Rohlena, J., Hozak, P., Truksa, J., Eccles, D., Haupt, L.M., Griffiths, L.R., Neuzil, J. and Berridge, M.V. (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab., 21, 81-94. https://doi.org/10.1016/j.cmet.2014.12.003
- Okar, D.A., Manzano, A., Navarro-Sabate, A., Riera, L., Bartrons, R. and Lange, A.J. (2001) PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci., 26, 30-35. https://doi.org/10.1016/S0968-0004(00)01699-6
- Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K.H. (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126, 107-120. https://doi.org/10.1016/j.cell.2006.05.036
- Green, D.R. and Chipuk, J.E. (2006) p53 and metabolism: Inside the TIGAR. Cell, 126, 30-32. https://doi.org/10.1016/j.cell.2006.06.032
- Shim, H., Dolde, C., Lewis, B.C., Wu, C.S., Dang, G., Jungmann, R.A., Dalla-Favera, R. and Dang, C.V. (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. U.S.A., 94, 6658-6663. https://doi.org/10.1073/pnas.94.13.6658
- Fantin, V.R., St-Pierre, J. and Leder, P. (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425-434. https://doi.org/10.1016/j.ccr.2006.04.023
- Cardone, R.A., Casavola, V. and Reshkin, S.J. (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat. Rev. Cancer, 5, 786-795. https://doi.org/10.1038/nrc1713
- Opavsky, R., Pastorekova, S., Zelnik, V., Gibadulinova, A., Stanbridge, E.J., Zavada, J., Kettmann, R. and Pastorek, J. (1996) Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics, 33, 480-487. https://doi.org/10.1006/geno.1996.0223
- Ivanov, S., Liao, S.Y., Ivanova, A., Danilkovitch-Miagkova, A., Tarasova, N., Weirich, G., Merrill, M.J., Proescholdt, M.A., Oldfield, E.H., Lee, J., Zavada, J., Waheed, A., Sly, W., Lerman, M.I. and Stanbridge, E.J. (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am. J. Pathol., 158, 905-919. https://doi.org/10.1016/S0002-9440(10)64038-2
- Robertson, N., Potter, C. and Harris, A.L. (2004) Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res., 64, 6160-6165. https://doi.org/10.1158/0008-5472.CAN-03-2224
- Secomb, T.W., Hsu, R., Dewhirst, M.W., Klitzman, B. and Gross, J.F. (1993) Analysis of oxygen transport to tumor tissue by microvascular networks. Int. J. Radiat. Oncol. Biol. Phys., 25, 481-489. https://doi.org/10.1016/0360-3016(93)90070-C
- Heldin, C.H., Rubin, K., Pietras, K. and Ostman, A. (2004) High interstitial fluid pressure - an obstacle in cancer therapy. Nat. Rev. Cancer, 4, 806-813. https://doi.org/10.1038/nrc1456
- Vaupel, P., Fortmeyer, H.P., Runkel, S. and Kallinowski, F. (1987) Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res., 47, 3496-3503.
- Minchenko, O., Opentanova, I. and Caro, J. (2003) Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. FEBS Lett., 554, 264-270. https://doi.org/10.1016/S0014-5793(03)01179-7
- Minchenko, O.H., Ogura, T., Opentanova, I.L., Minchenko, D.O. and Esumi, H. (2005) Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: expression and hypoxic regulation. Mol. Cell. Biochem., 280, 227-234. https://doi.org/10.1007/s11010-005-8009-6
- Acker, T. and Plate, K.H. (2002) A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology. J. Mol. Med., 80, 562-575. https://doi.org/10.1007/s00109-002-0355-1
- Semenza, G.L. (2000) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit. Rev. Biochem. Mol. Biol., 35, 71-103. https://doi.org/10.1080/10409230091169186
- Barthel, A., Okino, S.T., Liao, J., Nakatani, K., Li, J., Whitlock, J.P., Jr. and Roth, R.A. (1999) Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J. Biol. Chem., 274, 20281-20286. https://doi.org/10.1074/jbc.274.29.20281
- Taha, C., Liu, Z., Jin, J., Al-Hasani, H., Sonenberg, N. and Klip, A. (1999) Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response to insulin. Role of mammalian target of rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation. J. Biol. Chem., 274, 33085-33091. https://doi.org/10.1074/jbc.274.46.33085
- Majewski, N., Nogueira, V., Bhaskar, P., Coy, P.E., Skeen, J.E., Gottlob, K., Chandel, N.S., Thompson, C.B., Robey, R.B. and Hay, N. (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell, 16, 819-830. https://doi.org/10.1016/j.molcel.2004.11.014
- Majewski, N., Nogueira, V., Robey, R.B. and Hay, N. (2004) Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol. Cell. Biol., 24, 730-740. https://doi.org/10.1128/MCB.24.2.730-740.2004
- Bauer, D.E., Hatzivassiliou, G., Zhao, F., Andreadis, C. and Thompson, C.B. (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 24, 6314-6322. https://doi.org/10.1038/sj.onc.1208773
- Deberardinis, R.J., Lum, J.J. and Thompson, C.B. (2006) Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J. Biol. Chem., 281, 37372-37380. https://doi.org/10.1074/jbc.M608372200
- Albanell, J., Dalmases, A., Rovira, A. and Rojo, F. (2007) mTOR signalling in human cancer. Clin. Transl. Oncol., 9, 484-493. https://doi.org/10.1007/s12094-007-0092-6
- Chiang, G.G. and Abraham, R.T. (2007) Targeting the mTOR signaling network in cancer. Trends Mol. Med., 13, 433-442. https://doi.org/10.1016/j.molmed.2007.08.001
- Martin, D.E. and Hall, M.N. (2005) The expanding TOR signaling network. Curr. Opin. Cell Biol., 17, 158-166. https://doi.org/10.1016/j.ceb.2005.02.008
- Hudson, C.C., Liu, M., Chiang, G.G., Otterness, D.M., Loomis, D.C., Kaper, F., Giaccia, A.J. and Abraham, R.T. (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol., 22, 7004-7014. https://doi.org/10.1128/MCB.22.20.7004-7014.2002
- Mathupala, S.P., Rempel, A. and Pedersen, P.L. (1997) Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J. Bioenerg. Biomembr., 29, 339-343. https://doi.org/10.1023/A:1022494613613
- Dang, C.V., Lewis, B.C., Dolde, C., Dang, G. and Shim, H. (1997) Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J. Bioenerg. Biomembr., 29, 345-354. https://doi.org/10.1023/A:1022446730452
- Dang, C.V. and Semenza, G.L. (1999) Oncogenic alterations of metabolism. Trends Biochem. Sci., 24, 68-72. https://doi.org/10.1016/S0968-0004(98)01344-9
- Lu, H., Forbes, R.A. and Verma, A. (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J. Biol. Chem., 277, 23111-23115. https://doi.org/10.1074/jbc.M202487200
- Kim, J.W., Gao, P., Liu, Y.C., Semenza, G.L. and Dang, C.V. (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol., 27, 7381-7393. https://doi.org/10.1128/MCB.00440-07
- Schwartzenberg-Bar-Yoseph, F., Armoni, M. and Karnieli, E. (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res., 64, 2627-2633. https://doi.org/10.1158/0008-5472.CAN-03-0846
-
Kawauchi, K., Araki, K., Tobiume, K. and Tanaka, N. (2008) p53 regulates glucose metabolism through an IKK-NF-
${\kappa}$ B pathway and inhibits cell transformation. Nat. Cell Biol., 10, 611-618. https://doi.org/10.1038/ncb1724 - Kondoh, H., Lleonart, M.E., Gil, J., Wang, J., Degan, P., Peters, G., Martinez, D., Carnero, A. and Beach, D. (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res., 65, 177-185.
- Beckert, S., Farrahi, F., Aslam, R.S., Scheuenstuhl, H., Konigsrainer, A., Hussain, M.Z. and Hunt, T.K. (2006) Lactate stimulates endothelial cell migration. Wound Repair Regen., 14, 321-324. https://doi.org/10.1111/j.1743-6109.2006.00127.x
-
Vegran, F., Boidot, R., Michiels, C., Sonveaux, P. and Feron, O. (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-
${\kappa}$ B/IL-8 pathway that drives tumor angiogenesis. Cancer Res., 71, 2550-2560. https://doi.org/10.1158/0008-5472.CAN-10-2828 - Draoui, N. and Feron, O. (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis. Model. Mech., 4, 727-732. https://doi.org/10.1242/dmm.007724
- Hirschhaeuser, F., Sattler, U.G. and Mueller-Klieser, W. (2011) Lactate: a metabolic key player in cancer. Cancer Res., 71, 6921-6925. https://doi.org/10.1158/0008-5472.CAN-11-1457
- Kurtoglu, M., Maher, J.C. and Lampidis, T.J. (2007) Differential toxic mechanisms of 2-deoxy-D-glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells. Antioxid. Redox Signal., 9, 1383-1390. https://doi.org/10.1089/ars.2007.1714
- Bandugula, V.R. and N, R.P. (2013) 2-Deoxy-D-glucose and ferulic acid modulates radiation response signaling in nonsmall cell lung cancer cells. Tumour Biol., 34, 251-259. https://doi.org/10.1007/s13277-012-0545-6
- Giammarioli, A.M., Gambardella, L., Barbati, C., Pietraforte, D., Tinari, A., Alberton, M., Gnessi, L., Griffin, R.J., Minetti, M. and Malorni, W. (2012) Differential effects of the glycolysis inhibitor 2-deoxy-D-glucose on the activity of pro-apoptotic agents in metastatic melanoma cells, and induction of a cytoprotective autophagic response. Int. J. Cancer, 131, E337-E347. https://doi.org/10.1002/ijc.26420
- Ralser, M., Wamelink, M.M., Struys, E.A., Joppich, C., Krobitsch, S., Jakobs, C. and Lehrach, H. (2008) A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc. Natl. Acad. Sci. U.S.A., 105, 17807-17811. https://doi.org/10.1073/pnas.0803090105
- Urakami, K., Zangiacomi, V., Yamaguchi, K. and Kusuhara, M. (2013) Impact of 2-deoxy-D-glucose on the target metabolome profile of a human endometrial cancer cell line. Biomed. Res., 34, 221-229. https://doi.org/10.2220/biomedres.34.221
- Robinson, G.L., Dinsdale, D., Macfarlane, M. and Cain, K. (2012) Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL. Oncogene, 31, 4996-5006. https://doi.org/10.1038/onc.2012.13
- Zagorodna, O., Martin, S.M., Rutkowski, D.T., Kuwana, T., Spitz, D.R. and Knudson, C.M. (2012) 2-Deoxyglucose-induced toxicity is regulated by Bcl-2 family members and is enhanced by antagonizing Bcl-2 in lymphoma cell lines. Oncogene, 31, 2738-2749. https://doi.org/10.1038/onc.2011.454
- Golding, J.P., Wardhaugh, T., Patrick, L., Turner, M., Phillips, J.B., Bruce, J.I. and Kimani, S.G. (2013) Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. Br. J. Cancer, 109, 976-982. https://doi.org/10.1038/bjc.2013.391
- Kim, S.M., Yun, M.R., Hong, Y.K., Solca, F., Kim, J.H., Kim, H.J. and Cho, B.C. (2013) Glycolysis inhibition sensitizes non-small cell lung cancer with T790M mutation to irreversible EGFR inhibitors via translational suppression of Mcl-1 by AMPK activation. Mol. Cancer Ther., 12, 2145-2156. https://doi.org/10.1158/1535-7163.MCT-12-1188
- Wood, T.E., Dalili, S., Simpson, C.D., Hurren, R., Mao, X., Saiz, F.S., Gronda, M., Eberhard, Y., Minden, M.D., Bilan, P.J., Klip, A., Batey, R.A. and Schimmer, A.D. (2008) A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol. Cancer Ther., 7, 3546-3555. https://doi.org/10.1158/1535-7163.MCT-08-0569
- Yamaguchi, R., Janssen, E., Perkins, G., Ellisman, M., Kitada, S. and Reed, J.C. (2011) Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PLoS ONE, 6, e24102. https://doi.org/10.1371/journal.pone.0024102
- Maher, J.C., Wangpaichitr, M., Savaraj, N., Kurtoglu, M. and Lampidis, T.J. (2007) Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-D-glucose. Mol. Cancer Ther., 6, 732-741.
- Raez, L.E., Papadopoulos, K., Ricart, A.D., Chiorean, E.G., Dipaola, R.S., Stein, M.N., Rocha Lima, C.M., Schlesselman, J.J., Tolba, K., Langmuir, V.K., Kroll, S., Jung, D.T., Kurtoglu, M., Rosenblatt, J. and Lampidis, T.J. (2013) A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 71, 523-530. https://doi.org/10.1007/s00280-012-2045-1
- Stacpoole, P.W. (1969) Review of the pharmacologic and therapeutic effects of diisopropylammonium dichloroacetate (DIPA). J. Clin. Pharmacol. J. New Drugs, 9, 282-291.
- Stacpoole, P.W. and Felts, J.M. (1970) Diisopropylammonium dichloroacetate (DIPA) and sodium dichloracetate (DCA): effect on glucose and fat metabolism in normal and diabetic tissue. Metabolism, 19, 71-78. https://doi.org/10.1016/0026-0495(70)90119-8
- Whitehouse, S. and Randle, P.J. (1973) Activation of pyruvate dehydrogenase in perfused rat heart by dichloroacetate (Short Communication). Biochem. J., 134, 651-653. https://doi.org/10.1042/bj1340651
- Stacpoole, P.W., Moore, G.W. and Kornhauser, D.M. (1978) Metabolic effects of dichloroacetate in patients with diabetes mellitus and hyperlipoproteinemia. N. Engl. J. Med., 298, 526-530. https://doi.org/10.1056/NEJM197803092981002
- Stacpoole, P.W. (1989) The pharmacology of dichloroacetate. Metabolism, 38, 1124-1144. https://doi.org/10.1016/0026-0495(89)90051-6
- Bersin, R.M. and Stacpoole, P.W. (1997) Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am. Heart J., 134, 841-855. https://doi.org/10.1016/S0002-8703(97)80007-5
- Stacpoole, P.W., Harman, E.M., Curry, S.H., Baumgartner, T.G. and Misbin, R.I. (1983) Treatment of lactic acidosis with dichloroacetate. N. Engl. J. Med., 309, 390-396. https://doi.org/10.1056/NEJM198308183090702
- Stacpoole, P.W., Wright, E.C., Baumgartner, T.G., Bersin, R.M., Buchalter, S., Curry, S.H., Duncan, C.A., Harman, E.M., Henderson, G.N., Jenkinson, S., et al. (1992) A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N. Engl. J. Med., 327, 1564-1569. https://doi.org/10.1056/NEJM199211263272204
- Stacpoole, P.W., Kerr, D.S., Barnes, C., Bunch, S.T., Carney, P.R., Fennell, E.M., Felitsyn, N.M., Gilmore, R.L., Greer, M., Henderson, G.N., Hutson, A.D., Neiberger, R.E., O'Brien, R.G., Perkins, L.A., Quisling, R.G., Shroads, A.L., Shuster, J.J., Silverstein, J.H., Theriaque, D.W. and Valenstein, E. (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics, 117, 1519-1531. https://doi.org/10.1542/peds.2005-1226
- Stacpoole, P.W., Gilbert, L.R., Neiberger, R.E., Carney, P.R., Valenstein, E., Theriaque, D.W. and Shuster, J.J. (2008) Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics, 121, e1223-e1228. https://doi.org/10.1542/peds.2007-2062
- Berendzen, K., Theriaque, D.W., Shuster, J. and Stacpoole, P.W. (2006) Therapeutic potential of dichloroacetate for pyruvate dehydrogenase complex deficiency. Mitochondrion, 6, 126-135. https://doi.org/10.1016/j.mito.2006.04.001
- Kaufmann, P., Engelstad, K., Wei, Y., Jhung, S., Sano, M.C., Shungu, D.C., Millar, W.S., Hong, X., Gooch, C.L., Mao, X., Pascual, J.M., Hirano, M., Stacpoole, P.W., DiMauro, S. and De Vivo, D.C. (2006) Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology, 66, 324-330. https://doi.org/10.1212/01.wnl.0000196641.05913.27
- Zhou, Z.H., McCarthy, D.B., O'Connor, C.M., Reed, L.J. and Stoops, J.K. (2001) The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. U.S.A., 98, 14802-14807. https://doi.org/10.1073/pnas.011597698
- Smolle, M., Prior, A.E., Brown, A.E., Cooper, A., Byron, O. and Lindsay, J.G. (2006) A new level of architectural complexity in the human pyruvate dehydrogenase complex. J. Biol. Chem., 281, 19772-19780. https://doi.org/10.1074/jbc.M601140200
- Brautigam, C.A., Wynn, R.M., Chuang, J.L., Machius, M., Tomchick, D.R. and Chuang, D.T. (2006) Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex. Structure, 14, 611-621.1 https://doi.org/10.1016/j.str.2006.01.001
- Bowker-Kinley, M.M., Davis, W.I., Wu, P., Harris, R.A. and Popov, K.M. (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J., 329, 191-196. https://doi.org/10.1042/bj3290191
- Huang, B., Wu, P., Popov, K.M. and Harris, R.A. (2003) Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes, 52, 1371-1376. https://doi.org/10.2337/diabetes.52.6.1371
- Motojima, K. and Seto, K. (2003) Fibrates and statins rapidly and synergistically induce pyruvate dehydrogenase kinase 4 mRNA in the liver and muscles of mice. Biol. Pharm. Bull., 26, 954-958. https://doi.org/10.1248/bpb.26.954
- Hsieh, M.C., Das, D., Sambandam, N., Zhang, M.Q. and Nahle, Z. (2008) Regulation of the PDK4 isozyme by the Rb-E2F1 complex. J. Biol. Chem., 283, 27410-27417. https://doi.org/10.1074/jbc.M802418200
- Velpula, K.K., Bhasin, A., Asuthkar, S. and Tsung, A.J. (2013) Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect. Cancer Res., 73, 7277-7289. https://doi.org/10.1158/0008-5472.CAN-13-1868
- Heshe, D., Hoogestraat, S., Brauckmann, C., Karst, U., Boos, J. and Lanvers-Kaminsky, C. (2011) Dichloroacetate metabolically targeted therapy defeats cytotoxicity of standard anticancer drugs. Cancer Chemother. Pharmacol., 67, 647-655. https://doi.org/10.1007/s00280-010-1361-6
- Roche, T.E., Baker, J.C., Yan, X., Hiromasa, Y., Gong, X., Peng, T., Dong, J., Turkan, A. and Kasten, S.A. (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid Res. Mol. Biol., 70, 33-75. https://doi.org/10.1016/S0079-6603(01)70013-X
- Bao, H., Kasten, S.A., Yan, X. and Roche, T.E. (2004) Pyruvate dehydrogenase kinase isoform 2 activity limited and further inhibited by slowing down the rate of dissociation of ADP. Biochemistry, 43, 13432-13441. https://doi.org/10.1021/bi049488x
- Kato, M., Li, J., Chuang, J.L. and Chuang, D.T. (2007) Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol. Structure, 15, 992-1004. https://doi.org/10.1016/j.str.2007.07.001
- Klyuyeva, A., Tuganova, A. and Popov, K.M. (2007) Amino acid residues responsible for the recognition of dichloroacetate by pyruvate dehydrogenase kinase 2. FEBS Lett., 581, 2988-2992. https://doi.org/10.1016/j.febslet.2007.05.052
- Li, J., Kato, M. and Chuang, D.T. (2009) Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate. J. Biol. Chem., 284, 34458-34467. https://doi.org/10.1074/jbc.M109.065557
- Evans, O.B. and Stacpoole, P.W. (1982) Prolonged hypolactatemia and increased total pyruvate dehydrogenase activity by dichloroacetate. Biochem. Pharmacol., 31, 1295-1300. https://doi.org/10.1016/0006-2952(82)90019-3
- Curry, S.H., Chu, P.I., Baumgartner, T.G. and Stacpoole, P.W. (1985) Plasma concentrations and metabolic effects of intravenous sodium dichloroacetate. Clin. Pharmacol. Ther., 37, 89-93. https://doi.org/10.1038/clpt.1985.17
- Stacpoole, P.W., Nagaraja, N.V. and Hutson, A.D. (2003) Efficacy of dichloroacetate as a lactate-lowering drug. J. Clin. Pharmacol., 43, 683-691. https://doi.org/10.1177/0091270003254637
- Morten, K.J., Caky, M. and Matthews, P.M. (1998) Stabilization of the pyruvate dehydrogenase E1alpha subunit by dichloroacetate. Neurology, 51, 1331-1335. https://doi.org/10.1212/WNL.51.5.1331
- Han, Z., Berendzen, K., Zhong, L., Surolia, I., Chouthai, N., Zhao, W., Maina, N., Srivastava, A. and Stacpoole, P.W. (2008) A combined therapeutic approach for pyruvate dehydrogenase deficiency using self-complementary adeno-associated virus serotype-specific vectors and dichloroacetate. Mol. Genet. Metab., 93, 381-387. https://doi.org/10.1016/j.ymgme.2007.10.131
- Ishida, N., Kitagawa, M., Hatakeyama, S. and Nakayama, K. (2000) Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability. J. Biol. Chem., 275, 25146-25154. https://doi.org/10.1074/jbc.M001144200
- Lu, K.P., Liou, Y.C. and Zhou, X.Z. (2002) Pinning down proline-directed phosphorylation signaling. Trends Cell Biol., 12, 164-172. https://doi.org/10.1016/S0962-8924(02)02253-5
- Virshup, D.M., Eide, E.J., Forger, D.B., Gallego, M. and Harnish, E.V. (2007) Reversible protein phosphorylation regulates circadian rhythms. Cold Spring Harb. Symp. Quant. Biol., 72, 413-420.
- Moretto-Zita, M., Jin, H., Shen, Z., Zhao, T., Briggs, S.P. and Xu, Y. (2010) Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc. Natl. Acad. Sci. U.S.A., 107, 13312-13317. https://doi.org/10.1073/pnas.1005847107
- Ozlu, N., Akten, B., Timm, W., Haseley, N., Steen, H. and Steen, J.A. (2010) Phosphoproteomics. Wiley Interdiscip. Rev. Syst. Biol. Med., 2, 255-276.
- Thomas, L.W., Lam, C. and Edwards, S.W. (2010) Mcl-1; the molecular regulation of protein function. FEBS Lett., 584, 2981-2989. https://doi.org/10.1016/j.febslet.2010.05.061
- Geschwind, J.F., Georgiades, C.S., Ko, Y.H. and Pedersen, P.L. (2004) Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev. Anticancer Ther., 4, 449-457. https://doi.org/10.1586/14737140.4.3.449
- Buijs, M., Vossen, J.A., Geschwind, J.F., Ishimori, T., Engles, J.M., Acha-Ngwodo, O., Wahl, R.L. and Vali, M. (2009) Specificity of the anti-glycolytic activity of 3-bromopyruvate confirmed by FDG uptake in a rat model of breast cancer. Invest. New Drugs, 27, 120-123. https://doi.org/10.1007/s10637-008-9145-0
- Ko, Y.H., Smith, B.L., Wang, Y., Pomper, M.G., Rini, D.A., Torbenson, M.S., Hullihen, J. and Pedersen, P.L. (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem. Biophys. Res. Commun., 324, 269-275. https://doi.org/10.1016/j.bbrc.2004.09.047
- Danial, N.N., Gramm, C.F., Scorrano, L., Zhang, C.Y., Krauss, S., Ranger, A.M., Datta, S.R., Greenberg, M.E., Licklider, L.J., Lowell, B.B., Gygi, S.P. and Korsmeyer, S.J. (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature, 424, 952-956. https://doi.org/10.1038/nature01825
- Ganapathy-Kanniappan, S., Geschwind, J.F., Kunjithapatham, R., Buijs, M., Vossen, J.A., Tchernyshyov, I., Cole, R.N., Syed, L.H., Rao, P.P., Ota, S. and Vali, M. (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res., 29, 4909-4918.
- Ihrlund, L.S., Hernlund, E., Khan, O. and Shoshan, M.C. (2008) 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol. Oncol., 2, 94-101. https://doi.org/10.1016/j.molonc.2008.01.003
- Vali, M., Vossen, J.A., Buijs, M., Engles, J.M., Liapi, E., Ventura, V.P., Khwaja, A., Acha-Ngwodo, O., Ganapathy-Kanniappan, S., Syed, L., Wahl, R.L. and Geschwind, J.F. (2008) Targeting of VX2 rabbit liver tumor by selective delivery of 3-bromopyruvate: a biodistribution and survival study. J. Pharmacol. Exp. Ther., 327, 32-37. https://doi.org/10.1124/jpet.108.141093
- Xu, R.H., Pelicano, H., Zhou, Y., Carew, J.S., Feng, L., Bhalla, K.N., Keating, M.J. and Huang, P. (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res., 65, 613-621.
- Blagosklonny, M.V. (2010) Linking calorie restriction to longevity through sirtuins and autophagy: any role for TOR. Cell Death Dis., 1, e12. https://doi.org/10.1038/cddis.2009.17
- Morselli, E., Maiuri, M.C., Markaki, M., Megalou, E., Pasparaki, A., Palikaras, K., Criollo, A., Galluzzi, L., Malik, S.A., Vitale, I., Michaud, M., Madeo, F., Tavernarakis, N. and Kroemer, G. (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis., 1, e10. https://doi.org/10.1038/cddis.2009.8
- Willcox, D.C., Willcox, B.J., Todoriki, H. and Suzuki, M. (2009) The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J. Am. Coll. Nutr., 28 Suppl, 500S-516S. https://doi.org/10.1080/07315724.2009.10718117
- Ho, V.W., Leung, K., Hsu, A., Luk, B., Lai, J., Shen, S.Y., Minchinton, A.I., Waterhouse, D., Bally, M.B., Lin, W., Nelson, B.H., Sly, L.M. and Krystal, G. (2011) A low carbohydrate, high protein diet slows tumor growth and prevents cancer initiation. Cancer Res., 71, 4484-4493. https://doi.org/10.1158/0008-5472.CAN-10-3973
- Bowker, S.L., Majumdar, S.R., Veugelers, P. and Johnson, J.A. (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care, 29, 254-258. https://doi.org/10.2337/diacare.29.02.06.dc05-1558
- Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., Alessi, D.R. and Morris, A.D. (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ, 330, 1304-1305. https://doi.org/10.1136/bmj.38415.708634.F7
- Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H., Hild, M., Kung, C., Wilson, C., Myer, V.E., MacKeigan, J.P., Porter, J.A., Wang, Y.K., Cantley, L.C., Finan, P.M. and Murphy, L.O. (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 136, 521-534. https://doi.org/10.1016/j.cell.2008.11.044
- Venkateswaran, V. and Klotz, L.H. (2010) Diet and prostate cancer: mechanisms of action and implications for chemoprevention. Nat. Rev. Urol., 7, 442-453. https://doi.org/10.1038/nrurol.2010.102
- Nomura, D.K., Long, J.Z., Niessen, S., Hoover, H.S., Ng, S.W. and Cravatt, B.F. (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell, 140, 49-61. https://doi.org/10.1016/j.cell.2009.11.027
- Hursting, S.D., Lavigne, J.A., Berrigan, D., Perkins, S.N. and Barrett, J.C. (2003) Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu. Rev. Med., 54, 131-152. https://doi.org/10.1146/annurev.med.54.101601.152156
- El Mjiyad, N., Caro-Maldonado, A., Ramirez-Peinado, S. and Munoz-Pinedo, C. (2011) Sugar-free approaches to cancer cell killing. Oncogene, 30, 253-264. https://doi.org/10.1038/onc.2010.466
- Lee, C. and Longo, V.D. (2011) Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene, 30, 3305-3316. https://doi.org/10.1038/onc.2011.91
- Wallace, D.C. (2012) Mitochondria and cancer. Nat. Rev. Cancer, 12, 685-698. https://doi.org/10.1038/nrc3365
- Galluzzi, L., Kepp, O. and Kroemer, G. (2012) Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol., 13, 780-788. https://doi.org/10.1038/nrm3479
- Cheon, J.M., Kim, D.I. and Kim, K.S. (2015) Insulin sensitivity improvement of fermented Korean Red Ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice. J. Ginseng Res., 39, 331-337. https://doi.org/10.1016/j.jgr.2015.03.005
- Kim, A.Y., Kwak, J.H., Je, N.K., Lee, Y.H. and Jung, Y.S. (2015) Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in HT-29 colon cancer cells. Toxicol. Res., 31, 151-156. https://doi.org/10.5487/TR.2015.31.2.151
- Kim, I.S., Yang, S.Y., Han, J.H., Jung, S.H., Park, H.S. and Myung, C.S. (2015) Differential gene expression in GPR40-overexpressing pancreatic beta-cells treated with linoleic acid. Korean J. Physiol. Pharmacol., 19, 141-149. https://doi.org/10.4196/kjpp.2015.19.2.141
- Li, Y., Park, J., Piao, L., Kong, G., Kim, Y., Park, K.A., Zhang, T., Hong, J., Hur, G.M., Seok, J.H., Choi, S.W., Yoo, B.C., Hemmings, B.A., Brazil, D.P., Kim, S.H. and Park, J. (2013) PKB-mediated PHF20 phosphorylation on Ser291 is required for p53 function in DNA damage. Cell. Signal., 25, 74-84. https://doi.org/10.1016/j.cellsig.2012.09.009
- Na, C.H., Hong, J.H., Kim, W.S., Shanta, S.R., Bang, J.Y., Park, D., Kim, H.K. and Kim, K.P. (2015) Identification of protein markers specific for papillary renal cell carcinoma using imaging mass spectrometry. Mol. Cells, 38, 624-629. https://doi.org/10.14348/molcells.2015.0013
- Liu, Y., Cao, Y., Zhang, W., Bergmeier, S., Qian, Y., Akbar, H., Colvin, R., Ding, J., Tong, L., Wu, S., Hines, J. and Chen, X. (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol. Cancer Ther., 11, 1672-1682. https://doi.org/10.1158/1535-7163.MCT-12-0131
- Chan, D.A., Sutphin, P.D., Nguyen, P., Turcotte, S., Lai, E.W., Banh, A., Reynolds, G.E., Chi, J.T., Wu, J., Solow-Cordero, D.E., Bonnet, M., Flanagan, J.U., Bouley, D.M., Graves, E.E., Denny, W.A., Hay, M.P. and Giaccia, A.J. (2011) Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med., 3, 94ra70.
- Anastasiou, D., Yu, Y., Israelsen, W.J., Jiang, J.K., Boxer, M.B., Hong, B.S., Tempel, W., Dimov, S., Shen, M., Jha, A., Yang, H., Mattaini, K.R., Metallo, C.M., Fiske, B.P., Courtney, K.D., Malstrom, S., Khan, T.M., Kung, C., Skoumbourdis, A.P., Veith, H., Southall, N., Walsh, M.J., Brimacombe, K.R., Leister, W., Lunt, S.Y., Johnson, Z.R., Yen, K.E., Kunii, K., Davidson, S.M., Christofk, H.R., Austin, C.P., Inglese, J., Harris, M.H., Asara, J.M., Stephanopoulos, G., Salituro, F.G., Jin, S., Dang, L., Auld, D.S., Park, H.W., Cantley, L.C., Thomas, C.J. and Vander Heiden, M.G. (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol., 8, 839-847. https://doi.org/10.1038/nchembio.1060
- Kung, C., Hixon, J., Choe, S., Marks, K., Gross, S., Murphy, E., DeLaBarre, B., Cianchetta, G., Sethumadhavan, S., Wang, X., Yan, S., Gao, Y., Fang, C., Wei, W., Jiang, F., Wang, S., Qian, K., Saunders, J., Driggers, E., Woo, H.K., Kunii, K., Murray, S., Yang, H., Yen, K., Liu, W., Cantley, L.C., Vander Heiden, M.G., Su, S.M., Jin, S., Salituro, F.G. and Dang, L. (2012) Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol., 19, 1187-1198. https://doi.org/10.1016/j.chembiol.2012.07.021
- Le, A., Cooper, C.R., Gouw, A.M., Dinavahi, R., Maitra, A., Deck, L.M., Royer, R.E., Vander Jagt, D.L., Semenza, G.L. and Dang, C.V. (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. U.S.A., 107, 2037-2042. https://doi.org/10.1073/pnas.0914433107
- Bhardwaj, R., Sharma, P.K., Jadon, S.P. and Varshney, R. (2012) A combination of 2-deoxy-D-glucose and 6-aminonicotinamide induces cell cycle arrest and apoptosis selectively in irradiated human malignant cells. Tumour Biol., 33, 1021-1030. https://doi.org/10.1007/s13277-012-0335-1
- Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M.C., Verrax, J., Rabbani, Z.N., De Saedeleer, C.J., Kennedy, K.M., Diepart, C., Jordan, B.F., Kelley, M.J., Gallez, B., Wahl, M.L., Feron, O. and Dewhirst, M.W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest., 118, 3930-3942.
- Michelakis, E.D., Webster, L. and Mackey, J.R. (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer, 99, 989-994. https://doi.org/10.1038/sj.bjc.6604554
- Strum, S.B., Adalsteinsson, O., Black, R.R., Segal, D., Peress, N.L. and Waldenfels, J. (2013) Case report: Sodium dichloroacetate (DCA) inhibition of the "Warburg Effect" in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP. J. Bioenerg. Biomembr., 45, 307-315. https://doi.org/10.1007/s10863-012-9496-2
- Addie, M., Ballard, P., Buttar, D., Crafter, C., Currie, G., Davies, B.R., Debreczeni, J., Dry, H., Dudley, P., Greenwood, R., Johnson, P.D., Kettle, J.G., Lane, C., Lamont, G., Leach, A., Luke, R.W., Morris, J., Ogilvie, D., Page, K., Pass, M., Pearson, S. and Ruston, L. (2013) Discovery of 4-amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases. J. Med. Chem., 56, 2059-2073. https://doi.org/10.1021/jm301762v
- Lin, J., Sampath, D., Nannini, M.A., Lee, B.B., Degtyarev, M., Oeh, J., Savage, H., Guan, Z., Hong, R., Kassees, R., Lee, L.B., Risom, T., Gross, S., Liederer, B.M., Koeppen, H., Skelton, N.J., Wallin, J.J., Belvin, M., Punnoose, E., Friedman, L.S. and Lin, K. (2013) Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin. Cancer Res., 19, 1760-1772. https://doi.org/10.1158/1078-0432.CCR-12-3072
- Dumble, M., Crouthamel, M.C., Zhang, S.Y., Schaber, M., Levy, D., Robell, K., Liu, Q., Figueroa, D.J., Minthorn, E.A., Seefeld, M.A., Rouse, M.B., Rabindran, S.K., Heerding, D.A. and Kumar, R. (2014) Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS ONE, 9, e100880. https://doi.org/10.1371/journal.pone.0100880
- Hirai, H., Sootome, H., Nakatsuru, Y., Miyama, K., Taguchi, S., Tsujioka, K., Ueno, Y., Hatch, H., Majumder, P.K., Pan, B.S. and Kotani, H. (2010) MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol. Cancer Ther., 9, 1956-1967. https://doi.org/10.1158/1535-7163.MCT-09-1012
- Chen, X., Qian, Y. and Wu, S. (2015) The Warburg effect: evolving interpretations of an established concept. Free Radic. Biol. Med., 79, 253-263. https://doi.org/10.1016/j.freeradbiomed.2014.08.027
Cited by
- A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress vol.25, pp.4, 2017, https://doi.org/10.4062/biomolther.2017.010
- The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites vol.6, pp.2, 2017, https://doi.org/10.3390/biology6020024
- Functional Mitochondria in Health and Disease vol.8, pp.1664-2392, 2017, https://doi.org/10.3389/fendo.2017.00296
- Manipulating carbohydrate metabolism to enhance regeneration (retrospective on DOI 10.1002/bies.201300110) vol.38, pp.12, 2016, https://doi.org/10.1002/bies.201600196
- Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance vol.18, pp.12, 2017, https://doi.org/10.3390/ijms18122755
- Cancer and Exercise: Warburg Hypothesis, Tumour Metabolism and High-Intensity Anaerobic Exercise vol.6, pp.1, 2018, https://doi.org/10.3390/sports6010010
- mTOR signalling and cellular metabolism are mutual determinants in cancer vol.18, pp.12, 2018, https://doi.org/10.1038/s41568-018-0074-8
- Metabolic reprogramming of mitochondrial respiration in metastatic cancer pp.1573-7233, 2018, https://doi.org/10.1007/s10555-018-9769-2
- Serial MRI Imaging Reveals Minimal Impact of Ketogenic Diet on Established Liver Tumor Growth vol.10, pp.9, 2018, https://doi.org/10.3390/cancers10090312
- Emerging roles of TRIO and F-actin-binding protein in human diseases vol.16, pp.1, 2018, https://doi.org/10.1186/s12964-018-0237-y