DOI QR코드

DOI QR Code

Access Point Selection Algorithm for Densely Deployed IEEE 802.11 WLANs

IEEE 802.11 무선랜 환경에서의 AP 선택 알고리즘

  • Kim, Gyul (Yonsei University Department of Computer Science) ;
  • Lee, SuKyoung (Yonsei University Department of Computer Science)
  • Received : 2016.03.31
  • Accepted : 2016.06.07
  • Published : 2016.06.30

Abstract

In the IEEE 802.11 Wireless LAN environment, the common Access Point (AP) selection of the existing terminal is based on signal strength. However, the signal strength-based AP selection method does not ensure an optimal data rate. Recently, several AP selection methods to solve this problem have been suggested. However, when we select AP, these have a latency problem and don't consider dense environments of AP. In this paper, we confirm the problem of the conventional AP selection about the signal strength and the throughput through the actual measurement, and propose algorithm that selects AP by scoring link speed and wireless round trip time to compensate the problem. Furthermore, the proposed AP selection algorithm through the actual experiment proves the improved performance as compared with the existing methods.

IEEE 802.11 Wireless LAN 환경에서, 현재 일반적인 기존 단말의 Access Point (AP) 선택은 신호세기에 기반한다. 하지만, 신호세기 기반 AP선택 방법은 최적의 데이터 전송률을 보장하지 않는다. 이 문제 해결을 위해 최근 여러 AP선택 방법들이 제안되었지만 AP선택 시, 지연 문제를 가지며 실제 밀집된 AP환경을 고려하지 않았다. 본 논문은 밀집된 AP 환경에서 단말의 신호세기 및 Throughput 측정실험을 통해 기존 AP선택 방법의 문제점을 확인하고, 이를 보완하기 위해 Link Speed 및 IEEE 802.11 무선링크의 Round Trip Time(RTT)을 Scoring하여 AP선택을 수행하는 알고리즘을 제안한다. 또한, 실험을 통해 제안된 AP선택 알고리즘이 기존방법들에 비해 성능적으로 향상되었음을 증명한다.

Keywords

References

  1. D. Y. Kim, S. H. Kim, M. G. Ha, T. H. Kim, and Y. H. Lee, "Internet of things technology and direction of progress," J. KICS, vol. 28, no. 09, pp. 49-57, Aug. 2011.
  2. J. S. Lee, M. H. Jung, and S. G. Lee, "802.11 WLANs technology," J. KICS, vol. 30, no. 06, pp. 13-19, May 2013.
  3. F. Xu, C. Tan, Q. Li, G. Yan, and J. Wu, "Designing a practical access point association protocol," in Proc. IEEE INFOCOM, pp. 1361-1369, San Diego CA, USA, Mar. 2010.
  4. A. J. Nicholson, Y. Chawathe, M. Y. Chen, B. D. Noble, and D. Wetherall, "Improved access point selection," ACM MobiSys06, pp. 233-245, Uppsala, Sweden, Jun. 2006.
  5. Y. Fukuda and Y. Oie, "Decentralize access point selection architecture for wireless LANs," IEICE Trans. Commun., vol. E90-B, no. 9, pp. 2513-2523, Mar. 2007. https://doi.org/10.1093/ietcom/e90-b.9.2513
  6. D. Gunawardena, P. Key, and L. Massoulie, "Network Characteristics: Modelling, Measurements and Admission Control," IWQoS, Berkeley CA, vol. 2707, pp. 3-20, Jun. 2003.
  7. R. C. L. Gmez, P. M. Velasco, and J. M. Fuertes, Wireless network delay estimation for time sensitive applications research report; ESAII RR-06-12; Technical University of Catalonia: Barcelona, Spain, 2006.
  8. B. H. Shim and B. J. Lee, "Evolution of MIMO technology," J. KICS, vol. 38, no. 08, pp. 712-723, Aug. 2013.
  9. IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11 TM-2012, pp. 818-819, Mar. 2012.

Cited by

  1. 사물인터넷을 위한 신경망 기반의 지능형 액세스 포인트 시스템의 구현 vol.20, pp.5, 2016, https://doi.org/10.7472/jksii.2019.20.5.95