DOI QR코드

DOI QR Code

선택사상기법을 이용한 GFDM의 최대전력 대 평균전력 비 감소기법

PAPR Reduction Scheme Using Selective Mapping in GFDM

  • Oh, Hyunmyung (UNIST Department of Electrical & Computer Engineering) ;
  • Yang, Hyun Jong (UNIST Department of Electrical & Computer Engineering)
  • 투고 : 2016.03.31
  • 심사 : 2016.05.27
  • 발행 : 2016.06.30

초록

기존 직교 주파수 분할 다중 방식 (orthogonal frequency division multiplexing; OFDM)에서는 최대전력 대 평균전력 비 (peak to average power ratio; PAPR)가 높아 회로 설계에 대한 어려움과, 신회 왜곡 등의 문제가 존재한다. 이에 따라 PAPR을 줄이기 위한 다양한 방법들이 제시되어 왔으나, 5G 이동통신에서 필요한 저지연을 만족하기 위해서는, OFDM의 직교성, 동기화가 지연시간 감소에 제한으로 작용한다. 비동기 방식에 알맞은 대안 중 하나는 GFDM이다. GFDM은 각 부 반송파가 주파수영역에서 나눠져 비동기 상황에서 강점을 가진다. 그러나 부심볼의 존재로 인해 OFDM보다 시간 축에서 신호의 중첩이 많기 때문에, 동일한 부 반송파 개수 조건에서 GFDM은 OFDM보다 높은 PAPR을 가진다. OFDM의 PAPR의 다양한 PAPR 감소기법 중 하나인 선택사상기법(selective mapping; SLM)을 GFDM에 적용하여, 시뮬레이션을 통해 기존 GFDM과 OFDM SLM 대비 GFDM SLM이 어느 정도 성능 향상이 있는지 확인하였다. 또 비동기 방식에서 간섭에 영향을 미치는 대역외 발사(out-of-band emission; OOB)를 비교하였다.

Orthogonal frequency division multiplexing (OFDM) has high peak to power ratio (PAPR). High PAPR makes problems such as signal distortion and circuit cost increasing. To solve the problemsm several PAPR reduction methods have been proposed. However, synchronization and orthogonality in OFDM systems may be a limitation to reduce latency for 5G networks. Generalized frequency division multiplexing (GFDM) is one of the possible solutions for asynchronous and non-orthogonal systems, which are more preferable to reduce the latency. However, multiple subsymbols in GFDM result in more superposition in time domain, GFDM has higher PAPR. Selective mapping (SLM) is one of PAPR reduction techniques in OFDM, which uses phase shift. The PAPR of GFDM SLM is compared to conventional GFDM and OFDM SLM in terms of PAPR reduction enhancement via numerical simulations. In addition, the out-of-band performance is analyzed in the aspect of asynchronous condition interference.

키워드

참고문헌

  1. G. Wunder, P. Jung, M. Kasparick, and T. Wild, "5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications," IEEE Commun. Mag., vol. 52, no. 2, pp. 97-105, Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736749
  2. R. Nee, and R. Prasad, OFDM for wireless multimedia communications, Artech House Inc., 2000.
  3. K. Seong, M. Mohseni, and J. M. Cioffi, "Optimal resource allocation for OFDMA downlink systems," in Proc. IEEE Int. Symp. Inf. Theory, pp. 1394-1398, Seattle, Jul. 2006.
  4. S. H. Han and J. H. Lee, "An overview of peak-to-average power ratio reduction techniques for multicarrier transmission," IEEE Wirel. Commun., vol. 12, no. 2, pp. 56-65, Apr. 2005. https://doi.org/10.1109/MWC.2005.1421929
  5. X. Li and L. J. Cimini Jr., "Effect of clipping and filtering on the performance of OFDM," IEEE Commun. Lett., vol. 2, no. 5, pp. 131-133, May 1998. https://doi.org/10.1109/4234.673657
  6. R. W. Bauml, R. F. H. Fisher, and J. B. Huber, "Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping," Electron. Lett., vol. 32, no. 22, pp. 2056-2057, 1996. https://doi.org/10.1049/el:19961384
  7. S. H. Han and J. H. Lee, "Modified selected mapping technique for power reduction of coded OFDM signal," IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335-341, Sept. 2004. https://doi.org/10.1109/TBC.2004.834200
  8. Y. L. Lee, Y. H. You, W. G. Jeon, J. H. Paik, and H. K. Song, "Peak-to-average power ratio in MIMO-OFDM systems using selective mapping," IEEE Commun. Lett., vol. 7, no. 12, pp. 575-577, Dec. 2003. https://doi.org/10.1109/LCOMM.2003.821329
  9. S. H. Muller and J. B. Huber, "OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences," Electron. Lett., vol. 33, no. 5, pp. 368-369, Feb. 1997. https://doi.org/10.1049/el:19970266
  10. Y. J. Cho, J. S. No, and D. J. Shin, "Low complexity PTS scheme for reducing PAPR in OFDM systems," J. KICS, vol. 38, no. 2, pp. 201-208, Feb. 2013
  11. B, S. Krongold and D. L. Jones, "An active-set approach for OFDM PAR reduction via tone reservation," IEEE Trans. Signal Process., vol. 52, no. 2, pp. 495-509, Feb. 2004. https://doi.org/10.1109/TSP.2003.821110
  12. M. H. Jang and K. H. Kim, "Pilot tone design for PAPR reduction in OFDM systems based on compressed channel sensing," J. KICS, vol. 40, no. 5, pp. 806-808, May 2015. https://doi.org/10.7840/kics.2015.40.5.806
  13. Y. Shang, H. Kim, H. Kim, and T. Jung, "New PAPR reduction method for spatial modulation," J. KICS, vol. 39, no. 1, pp. 12-18, Jan. 2014.
  14. G. P. Fettweis, "GFDM - Generalized frequency division multiplexing," IEEE VTC Spring 2009, pp. 1-4, Barcelona, Apr. 2009.
  15. N. Michailow, M. Matthe, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, "Generalized frequency division multiplexing for 5th generation cellular networks," IEEE Trans. Commun., vol. 62, no. 9, pp. 3045-3061, Sept. 2014. https://doi.org/10.1109/TCOMM.2014.2345566
  16. K. D. Wong, M. O. Pun, and H. V. Poor, "The continuous-time peak-to-average power ratio of OFDM signals using complex modulation schemes," IEEE Trans. Commun., vol. 56, no. 9, pp. 1390-1393, Sept. 2008. https://doi.org/10.1109/TCOMM.2008.060438
  17. 3GPP TR 36.942 version 8.2.0 Release 8, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios (3GPP TR 36.942 version 8.2.0 Release 8), Jul. 2009.