DOI QR코드

DOI QR Code

Effective ToA-Based Indoor Localization Method Considering Accuracy in Wireless Sensor Networks

무선 센서 네트워크 상에서 정확도를 고려한 효과적인 도래시간 기반 무선실내측위방법

  • Received : 2016.04.21
  • Accepted : 2016.06.07
  • Published : 2016.06.30

Abstract

We propose an effective ToA-based localization method considering accuracy in indoor environments. The purpose of the localization system is to estimate the coordinates of the geographic location of target device. In indoor environments, accurately estimating the location of a target device is not easy due to various errors. The accuracy of wireless localization is influenced by NLOS errors. ToA-based localization measures the location of a target device using the distances between a mobile device and three or more base stations. However, each of the NLOS errors along a distance estimated from a target device to a base station is different because of dissimilar obstacles. To accurately estimate the target's location, an optimized localization process is needed in indoor environments. In this paper, effective ToA-based localization method process is proposed for improving accuracy in wireless sensor networks. Performance evaluations are presented, and the experimental localization system results are proved through comparisons of various localization methods with the proposed methods.

본 논문은 실내 환경에서 정확도를 고려한 효과적인 도래시간 기반 무선 측위 방법을 제안하였다. 위치 측위의 목적은 타겟의 위치를 추정하는 것이다. 실내 환경에서 타겟의 정확한 위치를 추정하는 것은 다양한 오류들 때문에 어렵다. 무선 측위의 정확성은 비가시성 오류에 큰 영향을 받는다. 도래시간 기반 측위는 수신기와 3개 이상의 송신기 들 사이에서 거리 값을 이용하여 위치를 추정한다. 그러나 송신기와 수신기의 위치에 따라 장애물들로 인해 각각의 비가시성 오류도 다르다. 수신기의 위치를 정확하게 추정하기 위해서는 최적화된 위치 측위 방법이 필요하다. 본 논문은 무선 센서 네트워크에서 정확도를 높이기 위한 효과적인 측위 방법을 제안한다. 측위 시스템의 정밀도를 높이기 위해 거리 측정 단계에서의 거리 값을 보정하는 방법과 비가시성 환경에서 발생하는 오차들을 최소화시켜 효율적으로 송신기들을 선택하는 알고리즘을 제안하여 성능을 향상시켰다. 제안한 방법의 성능 평가는 다양한 오차들이 존재하는 실제 환경에서의 실험들로 인해 제시되었고, 실험적인 결과들은 기존의 방법과 제안된 방법을 가진 측위 절차의 추정 오차 결과들의 비교를 통해 측위 시스템의 정확도가 향상된 것을 증명하였다.

Keywords

References

  1. J. Y. Lee and D. M. Lee, "Indoor localization algorithm using smartphone sensors and probability of normal distribution in Wi-Fi environment," J. KICS, vol. 40, no. 9, pp. 1856-1864, Sept. 2015. https://doi.org/10.7840/kics.2015.40.9.1856
  2. M. S. Lee, J. W. Kim, and S. S. Lee, "Pedestrian positioning method using multi-level transmission signal strength," J. KICS, vol. 40, no. 1, pp. 124-131, Jan. 2015. https://doi.org/10.7840/kics.2015.40.1.124
  3. A. Kupper, Location-based services: Fundamentals and operation, Wiley, New York, 2005.
  4. Y. T. Chan, W. Y. Tsui, H. C. So, and P. C. Ching, "Time-of-arrival based localization under NLOS conditions," IEEE Trans. Veh. Technol., vol. 55, no. 1, pp. 17-24, Jan. 2006. https://doi.org/10.1109/TVT.2005.861207
  5. H. J. Ahn, T. V. Thuy, and Y. H. Lee, "Bluetooth beacon planing considering position estimation accuracy in small and isolated in-door environment," J. KICS, vol 40, no. 7, pp. 1307-1312, Jul. 2015. https://doi.org/10.7840/kics.2015.40.7.1307
  6. H. S. Ahn, H. Hur, and W. S. Choi, "One-way ranging technique for CSS-based indoor localization," 6th IEEE Int. Conf. Ind. Informat., 2008 (INDIN 2008), pp. 1513-1518, Jul. 2008.
  7. H. Kim, "Double-sided two-way ranging algorithm to reduce ranging time," IEEE Commun. Lett., vol. 13, no. 7, pp. 486-488, Jul. 2009. https://doi.org/10.1109/LCOMM.2009.090093
  8. L. J. Xing, L. Zhiwei, and F. C. P. Shin, "Symmetric double side two way ranging with unequal reply time," IEEE 66th Veh. Technol. Conf. 2007 (VTC-2007), pp. 1980-1983, Sept. 2007.
  9. D. G. Oh, S. R. Go, and J. W. Chong, "Packet-reduced ranging method with supperresolution TOA estimation algorithm for chirp-based RTLS," ETRI J., vol. 35, no. 3, pp. 361-370, Jun. 2013. https://doi.org/10.4218/etrij.13.0112.0678
  10. I. Guvenc and C. C. Chong, "A survey on TOA based wireless localization and NLOS mitigation techniques," IEEE Commun. Surveys & Tuts., vol. 11, no. 3, pp. 107-124, 3rd Quarter, 2009. https://doi.org/10.1109/SURV.2009.090308
  11. K. W. Cheung, H. C. So, W. K. Ma, and Y. T. Chan, "Least squares algorithms for time-of-arrival based mobile location," IEEE Trans. Sig. Proc., vol. 52, no. 4, pp. 1121-1130, Apr. 2004. https://doi.org/10.1109/TSP.2004.823465
  12. Y. T. Chan, H. Y. C. Hang, and P. C. Ching, "Exact and approximate maximum likelihood localization algorithms," IEEE Trans. Veh. Technol., vol. 55, no. 1, pp. 10-16, Jan. 2006. https://doi.org/10.1109/TVT.2005.861162
  13. I. Guvenc, C. C. Chong, and F. Watanabe, "Analysis of a linear least-squares localization technique in LOS and NLOS environments," IEEE 65th Veh. Technol. Conf. 2007, pp. 1886-1890, Apr. 2007.
  14. J. J. Caffery and G. L. Stuber, "Overview of radiolocation in CDMA cellular systems," IEEE Commun. Mag., vol. 36, no. 4, pp. 38-45, Apr. 1998.
  15. B. T. Sieskul, F. Zheng, and T. Kaiser, "Time-of-arrival estimation in path attenuation," IEEE 10th Workshop on Sig. Proc. Advances in Wirel. Commun., 2009, pp. 573-577, Jun. 2009.
  16. C. H. Chen, K. T. Feng, C. L. Chen, and P. H. Tseng, "Wireless location estimation with the assistance of virtual base stations," IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 93-106, Jan. 2009. https://doi.org/10.1109/TVT.2008.924984
  17. S. R. Go, S. D. Kim, and J. W. Chong, "An efficient non line of sight error mitigation method for TOA measurement in indoor environments," in Proc. Int. Conf. Ubiquitous Inform. Manag. Commun., no. 72, Jan. 2014.
  18. S. R. Go and J. W. Chong, "An efficient TOA-Based localization scheme based on BS selection in wireless sensor networks," IEICE Trans. Commun., E97-B, no. 11, pp. 2560-2569, Nov. 2014. https://doi.org/10.1587/transcom.E97.B.2560
  19. B. H. Lee, H. Hur, and H. S. Ahn, "Environmental-adaptive bias calibration in wireless localization," IEEE Commun. Lett., vol. 17, no. 4, pp. 717-720, Apr. 2013. https://doi.org/10.1109/LCOMM.2013.021913.130118
  20. IEEE Standard 802.15.4a-2007, pp. 1-203, Aug. 2007.
  21. ISO/IEC Standard 24730-5, pp. 1-72, Mar. 2010.
  22. D. G. Oh, M. K. Kwak, and J. W. Chong, "A subspace-based two-way ranging system using a chirp spread spectrum modem, robust to frequency offset," IEEE Trans. Wirel. Commun., vol. 11, no. 4, pp. 1478-1487, Apr. 2012. https://doi.org/10.1109/TWC.2012.030512.111044

Cited by

  1. 수상 안전을 위한 Finger Printing 기반 무선 위치추적 기술 vol.22, pp.7, 2018, https://doi.org/10.6109/jkiice.2018.22.7.1001
  2. 칼만필터를 적용한 UWB 센서기반 제조업 조립공정작업의 실시간 위치추적 시스템 개발 vol.21, pp.2, 2016, https://doi.org/10.5762/kais.2020.21.2.627