DOI QR코드

DOI QR Code

Impact of Climate Change on Yield Loss Caused by Bacterial Canker on Kiwifruit in Korea

기후변화 시나리오에 따른 미래 참다래 궤양병 피해 예측

  • Do, Ki Seok (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Chung, Bong Nam (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Choi, Kyung San (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Ahn, Jeong Joon (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Joa, Jae Ho (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • 도기석 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 정봉남 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 최경산 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 안정준 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 좌재호 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소)
  • Received : 2015.12.29
  • Accepted : 2016.06.17
  • Published : 2016.06.30

Abstract

We estimated the averaged maximum incidences of bacterial canker at suitable sites for kiwifruit cultivation in 2020s and 2050s using D-PSA-K model with RCP4.5 and RCP8.5 climate change scenarios. Though there was a little difference between the estimation using RCP4.5 and that using RCP8.5, the estimated maximum disease incidences were more than 75% at all the suitable sites in Korea except for some southern coastal areas and Jeju island under the assumption that there are a plenty of infections to cause the symptoms. We also analyzed the intermediate and final outputs of D-PSA-K model to find out the trends on the change in disease incidence affected by climate change. Whereas increase of damage to kiwifruit canes in a non-frozen environment caused by bacterial canker was estimated at almost all the suitable sites in both the climate change scenarios, rate of necrosis increase caused by the bacterial canker pathogen in a frozen environment during the last overwintering season was predicted to be reduced at almost all the suitable sites in both the climate change scenarios. Directions of change in estimated maximum incidence varied with sites and scenarios. Whereas the maximum disease incidence at 3.14% of suitable sites for kiwifruit cultivation in 2020s under RCP4.5 scenario was estimated to increase by 10% or more in 2050s, the maximum disease incidence at 25.41% of the suitable sites under RCP8.5 scenario was estimated so.

RCP4.5와 RCP8.5 미래 기후 변화 시나리오자료와 참다래 궤양병 피해 예측 모형인 D-PSA-K, 미래 참다래 재배적지 지도를 활용하여 궤양병의 미래 피해를 예측하고 참다래 궤양병의 발생 변화의 경향성을 찾아 보았다. 병원 세균에 의한 감염이 충분히 있다는 가정 아래에서 RCP4.5와 RCP8.5 시나리오의 2020년대와 2050년대에서 궤양병의 최대이병주율은 제주도와 남해안 일부 지역을 제외한 대부분의 지역에서 75% 이상으로 나타날 것으로 예측되었다. 두 시나리오들 모두에서 월동기 저온 환경이 없다는 가정 아래에서의 참다래 궤양병에 의한 가지 피해량은 거의 모든 재배가능지에서 증가될 것으로 예측된 반면에 월동기 저온에 의한 가지 피해량 증가율은 거의 모든 재배가능지에서 감소할 것으로 예측되었다. 지역 및 시나리오별로 궤양병 피해의 증가 및 감소의 경향은 다르게 나타날 것으로 예측되었다. RCP4.5 시나리오에서 2050년대에 2020년대에 비하여 10% 이상 최대 이병주율의 증가가 일어날 것으로 예측된 참다래 재배 가능지는 전체 재배 가능지의 3.14%, RCP8.5 시나리오에서는 25.41%였다.

Keywords

References

  1. Balestra, G. M., A. Mazzaglia, A. Quattrucci, M. Renzi, and A. Rossetti, 2009: Current status of bacterial canker spread on kiwifruit in Italy. Australasian Plant Disease Notes 4, 34-36.
  2. Balestra, G. M., M. Renzi, and A. Mazzaglia, 2010: First report of bacterial canker of Actinidia deliciosa caused by Pseudomonas syringae pv. actinidiae in Portugal. New Disease Reports 22, 10pp. https://doi.org/10.5197/j.2044-0588.2010.022.010
  3. Balestra, G. M., M. Renzi, and A. Mazzaglia, 2011: First report of Pseudomonas syringae pv. actinidiae on kiwifruit plants in Spain. New Disease Reports 24, 10pp. https://doi.org/10.5197/j.2044-0588.2011.024.010
  4. Bastas, K., and A. Karakaya, 2012: First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Turkey. Plant Disease 96, 452pp.
  5. Collier, R. H., S. Finch, K. Phelps, and A. R. Thompson, 1991: Possible impact of global warming on cabbage root fly (Delia radicum) activity in the UK. Annals of Applied Biology 118, 261-271. https://doi.org/10.1111/j.1744-7348.1991.tb05627.x
  6. Do, K. S., B. N. Jung, and J. H. Choa, 2015: A model for estimating the maximum incidence of bacterial canker on kiwifruit canes at early growing season. The 2015 KSPP Fall Meeting and International Conference, Goeje, Gyeongnam, The Korean Society of Plant Pathology, 266-267.
  7. Everett, K. R., R. K. Taylor, M. K. Romberg, J. Rees-George, R. A. Fullerton, J. L. Vanneste, and M. A. Manning, 2011: First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Australasian Plant Disease Notes 6, 67-71. https://doi.org/10.1007/s13314-011-0023-9
  8. Forister, M. L., and A. M. Shapiro, 2003: Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biology 9, 1130-1135. https://doi.org/10.1046/j.1365-2486.2003.00643.x
  9. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.), IPCC, Geneva, Switzerland, 151 pp.
  10. Jung, M. P., H. H. Park, S. G. Lee, and K. H. Kim, 2013a: Prediction of adult emergence time and generation number of overwintered small brown planthopper, Laodelphax striatellus according to RCP8.5 climate change scenario. Korean Journal of Applied Entomology 52(4), 427-430. https://doi.org/10.5656/KSAE.2013.11.0.081
  11. Jung, M. P., K. H. Kim, S. G. Lee, and H. H. Park, 2013b: Effect of climate change on the occurrence of overwintered moths of orchards in South Korea. Environmental Research 43(3), 177-182.
  12. Kiritani, K., 2006: Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Population Ecology 48, 5-12. https://doi.org/10.1007/s10144-005-0225-0
  13. Ko, S. J., Y. H. Lee, K. H. Cha, S. D. Lee, and K. C. Kim, 2002: Occurrence of kiwifruit bacterial canker disease and control by cultivation type. Research in Plant Disease 8, 179-183. (in Korean with English abstract) https://doi.org/10.5423/RPD.2002.8.3.179
  14. Koh, Y. J., 1995: Economically important diseases of kiwifruit. Plant Disease and Agriculture 1, 3-13. (in Korean with English abstract)
  15. Koh, Y. J., B. J. Cha, H. J. Chung, and D. H. Lee, 1994: Outbreak and spread of bacterial canker in kiwifruit. Korean Journal of Plant Pathology 10, 68-72. (in Korean with English abstract)
  16. Koh, Y. J., G. H. Kim, J. S. Jung, Y. S. Lee, and J. S. Hur, 2010: Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. New Zealand Journal of Crop and Horticulture Science 38, 275-282. https://doi.org/10.1080/01140671.2010.512624
  17. Koh, Y. J., G. H. Kim, H. S. Koh, Y. S. Lee, S. C. Kim, and J. S. Jung, 2012: Occurrence of a new type of Pseudomonas syringae pv. actinidiae strain of bacterial canker on kiwifruit in Korea. The Plant Pathology Journal 28, 423-427. https://doi.org/10.5423/PPJ.NT.05.2012.0061
  18. Lee, J. H., J. H. Kim, K. H. Kim, J. S. Jung, J. S. Hur, and Y. J. Koh, 2005: Comparative analysis of Korean and Japanese strains of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit. The Plant Pathology Journal 21, 119-126. https://doi.org/10.5423/PPJ.2005.21.2.119
  19. National Institute of Environmental Research, 2015: Korean climate change assessment report 2014. National Institute of Environmental Research, 326pp.
  20. Shin, J. W., and S. C. Yun, 2011: Impact of climate change on fungicide spraying for anthracnose on hot pepper in Korea during 2011-2100. Korean Journal of Agricultural and Forest Meteorology 13(1), 10-19. https://doi.org/10.5532/KJAFM.2011.13.1.010
  21. Scortichini, M., 1994: Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy. Plant Pathology 43, 1035-1038. https://doi.org/10.1111/j.1365-3059.1994.tb01654.x
  22. Serizawa, S., Y. Takikawa, T. Ichikawa, and M. Goto, 1989: Occurrence of bacterial canker of kiwifruit in Japan: description of symptoms, isolation of the pathogen and screening of bactericides. Annals of the Phytopathology Society of Japan 55, 427-436. https://doi.org/10.3186/jjphytopath.55.427
  23. Sparks, T. H., and T. J. Yates, 1997: The effect of spring temperature on the appearance dates of British butterflies 1883-1993. Ecography 20, 368-374. https://doi.org/10.1111/j.1600-0587.1997.tb00381.x
  24. Stefanescu, C., J. Penuelas, and I. Filella, 2003: Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Global Change Biology 9, 1494-1506. https://doi.org/10.1046/j.1365-2486.2003.00682.x
  25. Sugiura, T., 1999: Prediction of full bloom date of pear using air temperature. Agriculture and Horticulture 54, 146-149.
  26. Takikawa, Y., S. Serizawa, T. Ichikawa, S. Tsuyumu, and M. Goto, 1989: Pseudomonas syringae pv. actinidiae pv. nov.: the causal bacterium of kiwifruit canker in Japan. Annals of the Phytopathology Society of Japan 55, 437-444. https://doi.org/10.3186/jjphytopath.55.437
  27. Vanneste, J. L., F. Poliakoff, C. Audusseau, D. A. Cornish, S. Pailard, C. Rivoal, and J. Yu, 2011a: First report of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit in France. Plant Disease 95, 1311pp.
  28. Vanneste, J. L., J. Yu, D. A. Cornish, S. Max, and G. Clark, 2011b: Presence of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit, on symptomatic and asymptomatic tissues of kiwifruit. New Zealand Plant Protection 64, 241-245.