DOI QR코드

DOI QR Code

Development of a Novel Immunochromatographic Assay for Rapid Detection of OXA-23 β-lactamase-producing Acinetobacter baumannii

  • Ji, Gil Young (Department of Pathology, Chungbuk National University College of Medicine) ;
  • Song, Hyung Geun (Department of Pathology, Chungbuk National University College of Medicine) ;
  • Jo, Mi Young (Department of Physiology, Chungbuk National University College of Medicine) ;
  • Hong, Seung Bok (Department of Clinical Laboratory Science, Chungbuk Health & Science University) ;
  • Shin, Kyeong Seob (Department of Laboratory Medicine, Chungbuk National University College of Medicine)
  • Received : 2016.01.09
  • Accepted : 2016.02.29
  • Published : 2016.06.30

Abstract

Among the several agents causing carbapenem resistance of Acinetobacter baumannii, the most common cause is OXA-23 ${\beta}$-lactamase, which is known to hydrolyze carbapenem. To effectively control dissemination of carbapenem-resistant Acinetobacter baumannii (CRAB), development of both rapid and easy-to-use detection methods are required. The aim of this study is to develop a novel immunochromatographic assay (ICA) for rapid detection of OXA-23 ${\beta}$-lactamase. Of the seven monoclonal antibodies (mAbs) screened by ELISA, four mAbs (4G6, 4H6, 6G4, 9A4) exhibited high reactivity. Of these four specific antibodies, the combination of 6G4/4G6 showed the greatest reactivity and this combination of mAbs (6G4/4G6 mAbs) was used to develop the OXA-23 ${\beta}$-lactamase ICA. Of 102 A. baumannii isolates tested, the OXA-23 ${\beta}$-lactamase ICA results were consistent with PCR analysis except one false positive and one false negative isolate. The overall sensitivity and specificity were 98.36% and 97.56%, respectively. In conclusion, to the best of our knowledge, we have developed the first specific antibody set to detect OXA-23 ${\beta}$-lactamase using an ICA kit. This novel ICA can be used as a reliable and easy-to-use immunological assay for detection of OXA-23 ${\beta}$-lactamase producing CRAB in clinical laboratories.

Keywords

References

  1. Bergmans HEN, van Die IM, Hoekstra WPM. Transformation in Escherichia coli: stages in the process. J Bacteriol. 1981. 146: 564-570.
  2. Clinical and Laboratory Standard Institute. Performance for antimicrobial susceptibility testing; twenty two informational supplement (M100-S22) Wayne, PA:CLSI, 2012.
  3. Hochuli E, Bannwarth W, Dobeli H, Gentz R, Stuber D. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nature Biotechnology. 1988. 6: 1321-1325. https://doi.org/10.1038/nbt1188-1321
  4. Jeong SH, Bae IK, Park KO, An YJ, Sohn SG, Jang SJ, Sung KH, Yang KS, Lee K. Outbreaks of imipenem-resistant Acinetobacter baumannii producing carbapenemases in Korea. J Microbiol. 2006. 44: 423-431.
  5. Ji GY, Song HG, Son BR, Hong SB, Kim JW, Shin KS. Development of a novel immunochromatographic assay for rapid detection of VanA ligase-producing vancomycin-resistant enterococci. J Microbiol Biotechnol. 2014. 24: 427-430. https://doi.org/10.4014/jmb.1307.07035
  6. Lee H, Yong D, Yum JH, Roh KH, Lee K, Yamane K, Arakawa Y, Chong Y. Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii in Korea. Diagn Microbiol Infect Dis. 2006. 56: 305-312. https://doi.org/10.1016/j.diagmicrobio.2006.05.002
  7. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003. 41: 4623-4629. https://doi.org/10.1128/JCM.41.10.4623-4629.2003
  8. Lee JH, Kang HY, Lee JY, Kim J, Lee YC, Seol SY, Cho DT, Kim KW, Song DY, Lee JC. Differences in phenotypic and genotypic traits against antimicrobial agents between Acinetobacter baumannii and Acinetobacter genomic species 13TU. J Antimicrob Chemother. 2007. 59: 633-639. https://doi.org/10.1093/jac/dkm007
  9. Lee K, Kim MN, Choi TY, Cho SE, Lee S, Whang DH, Yong D, Chong Y, Woodford N. Wide dissemination of OXA-type carbapenemases in clinical Acinetobacter spp. isolates from South Korea. Int J Antimicrob Agents. 2009. 33: 520-524. https://doi.org/10.1016/j.ijantimicag.2008.10.009
  10. Lee K, Kim MN, Kim JS, Hong HL, Kang JO, Shin JH, Park YJ, Yong D, Jeong SH. Further increases in carbapenem-, amikacin-, and fluoroquinolone-resistant isolates of Acinetobacter spp. and P. aeruginosa in Korea: KONSAR study 2009. Yonsei Med J. 2009. 52: 793-802.
  11. Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008. 358: 1271-1281. https://doi.org/10.1056/NEJMra070741
  12. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008. 21: 538-582. https://doi.org/10.1128/CMR.00058-07
  13. Shin KS, Song HG, Kim H, Yoon S, Hong SB, Koo SH, Kim J, Kim JW, Rho KH. Direct detection of methicillin-resistant Staphylococcus aureus from blood cultures using a MRSA rapid kit based on immunochromatographic immunoassay to detect penicillin-binding protein 2a. Diagn Microbiol Infect Dis. 2010. 67: 301-303. https://doi.org/10.1016/j.diagmicrobio.2010.02.018
  14. Stahli C, Staehelin T, Miggiano V, Schmidt J, Haring P. High frequencies of antigen-specific hybridoma: dependence on immunization parameters and prediction by spleen cell analysis. J Immunnol Methods. 1980. 32: 297-304. https://doi.org/10.1016/0022-1759(80)90194-5
  15. Sung JY, Kwon KC, Cho HH, Koo SH. Antimicrobial resistance determinants in imipenem-nonsusceptible Acinetobacter calcoaceticus-baumannii complex isolated in Daejeon, Korea. Korean J Lab Med. 2011. 31: 265-270. https://doi.org/10.3343/kjlm.2011.31.4.265
  16. Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol. 2006. 44: 2974-2976. https://doi.org/10.1128/JCM.01021-06
  17. Villegas MV, Hartstein AI. Acinetobacter outbreaks, 1977-2000. Infect Control Hosp Epidemiol. 2003. 24: 284-295. https://doi.org/10.1086/502205
  18. Walther-Rasmussen J, Hoiby N. OXA-type carbapenemases. J Antimicrob Chemother. 2006. 57: 373-383. https://doi.org/10.1093/jac/dki482
  19. Wilks M, Wilson A, Warwick S, Price E, Kennedy D, Ely A, Millar MR. Control of an outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus colonization and infection in an intensive care unit (ICU) without closing the ICU or placing patients in isolation. Infect Control Hosp Epidemiol. 2006. 27: 654-658. https://doi.org/10.1086/507011
  20. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006. 27: 351-353. https://doi.org/10.1016/j.ijantimicag.2006.01.004
  21. Yum JH, Yong D, Lee K, Kim HS, Chong Y. A new integrin carrying VIM-2 metallo-b-lactamase gene cassette in a Serratia marcescnes isolate. Diagn Microbiol Infect Dis. 2002. 42: 217-219. https://doi.org/10.1016/S0732-8893(01)00352-2
  22. Zong Z, Lu X, Valenzuela, JK, Partridge SR, Iredell J. An outbreak of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemase in western China. Int J Antimicrob Agents. 2008. 31: 50-54. https://doi.org/10.1016/j.ijantimicag.2007.08.019