References
- Antonarakis, A., K.S., Richards, and J. Brasington, 2008. Object-based land cover classification using airborne LiDAR, Remote Sensing of Environment, 112(6): 2988-2998. https://doi.org/10.1016/j.rse.2008.02.004
- Bruzzone, L., M. Marconcini, U. Wegmuller, and A. Wiesmann, 2004. An advanced system for the automatic classification of multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1321-1334. https://doi.org/10.1109/TGRS.2004.826821
- Chen, J., J. Chen, A. Liao, X. Cao, L. Chen, X. Chen, C. He, G. Han, S. Peng, M. Lu, W. Zhang, X. Tong, and J. Mills, 2015. Global land cover mapping at 30m resolution: A POK-based operational approach, ISPRS Journal of Photogrammetry and Remote Sensing, 103: 7-27. https://doi.org/10.1016/j.isprsjprs.2014.09.002
- Conrad, C., R.R. Colditz, S. Dech, D. Klein, and P.L.G. Vlek, 2011. Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems, International Journal of Remote Sensing, 32(23): 8763-8778. https://doi.org/10.1080/01431161.2010.550647
- Doraiswamy, P.C., A.J. Stern, and B. Akhmedov, 2007. Crop classification in the US Corn Belt using MODIS imagery, Proc. of 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, July 23-28, pp. 809-812.
- Franklin S. and M. Wulder, 2002. Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas, Progress in Physical Geography, 26(2): 173-205. https://doi.org/10.1191/0309133302pp332ra
- Hao, P., Y. Zhan, L. Wang, Z. Niu, and M. Shakir, 2015. Feature selection of time series MODIS data for early crop classification using random forest: A case study in Kansas, USA, Remote Sensing, 7(5): 5347-5369. https://doi.org/10.3390/rs70505347
- Jain, A.K., 2010. Data clustering: 50 years beyond Kmeans, Pattern Recognition Letters, 31(8): 651-666. https://doi.org/10.1016/j.patrec.2009.09.011
- Kim, Y., N.-W. Park, S. Hong, K. Lee, and H.Y. Yoo, 2014. Early production of large-area crop classification map using time-series vegetation index and past crop cultivation patterns - A case study in Iowa State, USA, Korean Journal of Remote Sensing, 30(4): 493-503 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.4.7
- Lee, E., J.H. Kastens, and S.L. Egbert, 2016. Investigating collection 4 versus collection 5 MODIS 250 m NDVI time-series data for crop separability in Kansas, USA, International Journal of Remote Sensing, 37(2): 341-355. https://doi.org/10.1080/01431161.2015.1125556
- Li, J., W.P. Menzel, Z. Yang, R.A. Frey, and S.A. Ackerman, 2003. High-spatial-resolution surface and cloud-type classification from MODIS multispectral band measurements, Journal of Applied Meteorology, 42(2): 204-226. https://doi.org/10.1175/1520-0450(2003)042<0204:HSRSAC>2.0.CO;2
- Lobell, D. B. and G. P. Asner, 2004. Cropland distributions from temporal unmixing of MODIS data, Remote Sensing of Environment, 93(3): 412-422. https://doi.org/10.1016/j.rse.2004.08.002
- Melgani, F. and L. Bruzzone, 2004. Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1778-1790. https://doi.org/10.1109/TGRS.2004.831865
- Mountrakis, G., J. Im, and C. Ogole, 2011. Support vector machines in remote sensing: A review, ISPRS Journal of Photogrammetry and Remote Sensing, 66(3): 247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
- Senthilnath, J., S. Bajpai, S. Omkar, P. Diwakar, and V. Mani, 2012. An approach to multi-temporal MODIS image analysis using image classification and segmentation, Advances in Space Research, 50(9): 1274-1287. https://doi.org/10.1016/j.asr.2012.07.003
- Simonneaux, V., B. Duchemin, D. Helson, S. Er-Raki, A. Olioso, and A. Chehbouni, 2008. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central morocco, International Journal of Remote Sensing, 29(1): 95-116. https://doi.org/10.1080/01431160701250390
- Small, C., 2001. Estimation of urban vegetation abundance by spectral mixture analysis, International Journal of Remote Sensing, 22(7): 1305-1334. https://doi.org/10.1080/01431160151144369
- Somers, B., G. P. Asner, L. Tits, and P. Coppin, 2011. Endmember variability in spectral mixture analysis: A review, Remote Sensing of Environment, 115(7): 1603-1616. https://doi.org/10.1016/j.rse.2011.03.003
- Sulla-Menashe, D., M.A. Friedl, O.N. Krankina, A. Baccini, C.E. Woodcock, A. Sibley, G. Sun, V. Kharuk, and V. Elsakov, 2011. Hierarchical mapping of Northern Eurasian land cover using MODIS data, Remote Sensing of Environment, 115(2): 392-403. https://doi.org/10.1016/j.rse.2010.09.010
- Wardlow, B.D. and S.L. Egbert, 2008. Large-area crop mapping using time-series MODIS 250m NDVI data: An assessment for the U.S. Central Great Plains, Remote Sensing of Environment, 112(3): 1096-1116. https://doi.org/10.1016/j.rse.2007.07.019
- Wessels, K., R. De Fries, J. Dempewolf, L. Anderson, A. Hansen, S. Powell, and E. Moran, 2004. Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone Ecosystem, USA and Para State, Brazil, Remote Sensing of Environment, 92(1): 67-83. https://doi.org/10.1016/j.rse.2004.05.002
- Xavier, A.C., B.F. Rudorff, Y.E. Shimabukuro, L.M.S. Berka, and M.A. Moreira, 2006. Multi temporal analysis of MODIS data to classify sugarcane crop, International Journal of Remote Sensing, 27(4): 755-768. https://doi.org/10.1080/01431160500296735
- Xie, Y., Z. Sha, and M. Yu, 2008. Remote sensing imagery in vegetation mapping: A review, Journal of Plant Ecology, 1(1): 9-23. https://doi.org/10.1093/jpe/rtm005
- Yu, Q., P. Gong, N. Clinton, G. Biging, M. Kelly, and D. Schirokauer, 2006. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery, Photogrammetric Engineering and Remote Sensing, 72(7): 799-811. https://doi.org/10.14358/PERS.72.7.799
- Zhang, J. and G. Foody, 2001. Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: Statistical and artificial neural network approaches, International Journal of Remote Sensing, 22(4): 615-628. https://doi.org/10.1080/01431160050505883
- Zhang, T., J. Qi, Y. Gao, Z. Ouyang, S. Zeng, and B. Zhao, 2015. Detecting soil salinity with MODIS time series VI data, Ecological Indicators, 52: 480-489. https://doi.org/10.1016/j.ecolind.2015.01.004
- Zhong, C., C. Wang, and C. Wu, 2015. MODIS-based fractional crop mapping in the US midwest with spatially constrained phenological mixture analysis, Remote Sensing, 7(1): 512-529. https://doi.org/10.3390/rs70100512
Cited by
- 고해상도 다중시기 위성영상을 이용한 밭작물 분류: 마늘/양파 재배지 사례연구 vol.33, pp.5, 2016, https://doi.org/10.7780/kjrs.2017.33.5.2.2
- 계층분류 기법을 이용한 위성영상 기반의 동계작물 구분도 작성 vol.33, pp.5, 2016, https://doi.org/10.7780/kjrs.2017.33.5.2.7
- 준감독 학습과 공간 유사성을 이용한 비접근 지역의 작물 분류 - 북한 대홍단 지역 사례 연구 - vol.33, pp.5, 2017, https://doi.org/10.7780/kjrs.2017.33.5.2.8