DOI QR코드

DOI QR Code

MODIS Data-based Crop Classification using Selective Hierarchical Classification

선택적 계층 분류를 이용한 MODIS 자료 기반 작물 분류

  • Kim, Yeseul (Department of Geoinformatic Engineering, Inha University) ;
  • Lee, Kyung-Do (Climate Change and Agroecology Division, National Institute of Agricultural Sciences) ;
  • Na, Sang-Il (Climate Change and Agroecology Division, National Institute of Agricultural Sciences) ;
  • Hong, Suk-Young (Soil and Fertilizer Division, National Institute of Agricultural Sciences) ;
  • Park, No-Wook (Department of Geoinformatic Engineering, Inha University) ;
  • Yoo, Hee Young (Geoinformatic Engineering Research Institute, Inha University)
  • 김예슬 (인하대학교 공간정보공학과) ;
  • 이경도 (국립농업과학원 기후변화생태과) ;
  • 나상일 (국립농업과학원 기후변화생태과) ;
  • 홍석영 (국립농업과학원 토양비료과) ;
  • 박노욱 (인하대학교 공간정보공학과) ;
  • 유희영 (인하대학교 공간정보공학연구소)
  • Received : 2016.05.24
  • Accepted : 2016.06.08
  • Published : 2016.06.30

Abstract

In large-area crop classification with MODIS data, a mixed pixel problem caused by the low resolution of MODIS data has been one of main issues. To mitigate this problem, this paper proposes a hierarchical classification algorithm that selectively classifies the specific crop class of interest by using their spectral characteristics. This selective classification algorithm can reduce mixed pixel effects between crops and improve classification performance. The methodological developments are illustrated via a case study in Jilin city, China with MODIS Normalized Difference Vegetation Index (NDVI) and Near InfRared (NIR) reflectance datasets. First, paddy fields were extracted from unsupervised classification of NIR reflectance. Non-paddy areas were then classified into corn and bean using time-series NDVI datasets. In the case study result, the proposed classification algorithm showed the best classification performance by selectively classifying crops having similar spectral characteristics, compared with traditional direct supervised classification of time-series NDVI and NIR datasets. Thus, it is expected that the proposed selective hierarchical classification algorithm would be effectively used for producing reliable crop maps.

MODIS 자료를 이용한 대규모 작물 분류에는 MODIS 자료의 상대적으로 낮은 공간해상도로 인한 분광학적 혼재 양상이 두드러지게 나타난다. 이러한 분광학적 혼재를 완화하기 위하여 이 연구에서는 작물의 분광특성을 이용하여 특정 작물의 계층을 선택적으로 구분하고 상세 분류를 수행하는 선택적 계층 분류 방법론을 제안하였다. 제안 방법론에서는 특정 작물에 대한 선택적 분류를 수행함으로써 작물간의 혼재를 완화하고 구분력을 향상시킬 수 있다. 제안 방법론의 적용성 평가에는 중국 길림성의 길림시를 대상으로 MODIS 정규식생지수 자료와 근적외선 자료를 이용한 작물 분류의 사례 연구를 수행하였다. 먼저 근적외선 자료의 무감독 분류를 수행하여 벼의 재배지역을 우선적으로 추출한 후에, 시계열 정규식생지수 자료를 이용하여 벼 재배지역이 아닌 영역을 대상으로 옥수수와 콩의 상세 분류를 수행하였다. 사례 연구 결과, 제안 방법론은 유사한 분광특성을 갖는 작물의 계층을 선택적으로 구분함으로써 기존 시계열 정규식생지수 자료와 근적외선 자료를 함께 이용하는 감독 분류 결과보다 향상된 분류 정확도를 나타내었다. 따라서 신뢰성 있는 작물 구분도 제작에 제안 방법론이 효과적으로 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Antonarakis, A., K.S., Richards, and J. Brasington, 2008. Object-based land cover classification using airborne LiDAR, Remote Sensing of Environment, 112(6): 2988-2998. https://doi.org/10.1016/j.rse.2008.02.004
  2. Bruzzone, L., M. Marconcini, U. Wegmuller, and A. Wiesmann, 2004. An advanced system for the automatic classification of multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1321-1334. https://doi.org/10.1109/TGRS.2004.826821
  3. Chen, J., J. Chen, A. Liao, X. Cao, L. Chen, X. Chen, C. He, G. Han, S. Peng, M. Lu, W. Zhang, X. Tong, and J. Mills, 2015. Global land cover mapping at 30m resolution: A POK-based operational approach, ISPRS Journal of Photogrammetry and Remote Sensing, 103: 7-27. https://doi.org/10.1016/j.isprsjprs.2014.09.002
  4. Conrad, C., R.R. Colditz, S. Dech, D. Klein, and P.L.G. Vlek, 2011. Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems, International Journal of Remote Sensing, 32(23): 8763-8778. https://doi.org/10.1080/01431161.2010.550647
  5. Doraiswamy, P.C., A.J. Stern, and B. Akhmedov, 2007. Crop classification in the US Corn Belt using MODIS imagery, Proc. of 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, July 23-28, pp. 809-812.
  6. Franklin S. and M. Wulder, 2002. Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas, Progress in Physical Geography, 26(2): 173-205. https://doi.org/10.1191/0309133302pp332ra
  7. Hao, P., Y. Zhan, L. Wang, Z. Niu, and M. Shakir, 2015. Feature selection of time series MODIS data for early crop classification using random forest: A case study in Kansas, USA, Remote Sensing, 7(5): 5347-5369. https://doi.org/10.3390/rs70505347
  8. Jain, A.K., 2010. Data clustering: 50 years beyond Kmeans, Pattern Recognition Letters, 31(8): 651-666. https://doi.org/10.1016/j.patrec.2009.09.011
  9. Kim, Y., N.-W. Park, S. Hong, K. Lee, and H.Y. Yoo, 2014. Early production of large-area crop classification map using time-series vegetation index and past crop cultivation patterns - A case study in Iowa State, USA, Korean Journal of Remote Sensing, 30(4): 493-503 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.4.7
  10. Lee, E., J.H. Kastens, and S.L. Egbert, 2016. Investigating collection 4 versus collection 5 MODIS 250 m NDVI time-series data for crop separability in Kansas, USA, International Journal of Remote Sensing, 37(2): 341-355. https://doi.org/10.1080/01431161.2015.1125556
  11. Li, J., W.P. Menzel, Z. Yang, R.A. Frey, and S.A. Ackerman, 2003. High-spatial-resolution surface and cloud-type classification from MODIS multispectral band measurements, Journal of Applied Meteorology, 42(2): 204-226. https://doi.org/10.1175/1520-0450(2003)042<0204:HSRSAC>2.0.CO;2
  12. Lobell, D. B. and G. P. Asner, 2004. Cropland distributions from temporal unmixing of MODIS data, Remote Sensing of Environment, 93(3): 412-422. https://doi.org/10.1016/j.rse.2004.08.002
  13. Melgani, F. and L. Bruzzone, 2004. Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1778-1790. https://doi.org/10.1109/TGRS.2004.831865
  14. Mountrakis, G., J. Im, and C. Ogole, 2011. Support vector machines in remote sensing: A review, ISPRS Journal of Photogrammetry and Remote Sensing, 66(3): 247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
  15. Senthilnath, J., S. Bajpai, S. Omkar, P. Diwakar, and V. Mani, 2012. An approach to multi-temporal MODIS image analysis using image classification and segmentation, Advances in Space Research, 50(9): 1274-1287. https://doi.org/10.1016/j.asr.2012.07.003
  16. Simonneaux, V., B. Duchemin, D. Helson, S. Er-Raki, A. Olioso, and A. Chehbouni, 2008. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central morocco, International Journal of Remote Sensing, 29(1): 95-116. https://doi.org/10.1080/01431160701250390
  17. Small, C., 2001. Estimation of urban vegetation abundance by spectral mixture analysis, International Journal of Remote Sensing, 22(7): 1305-1334. https://doi.org/10.1080/01431160151144369
  18. Somers, B., G. P. Asner, L. Tits, and P. Coppin, 2011. Endmember variability in spectral mixture analysis: A review, Remote Sensing of Environment, 115(7): 1603-1616. https://doi.org/10.1016/j.rse.2011.03.003
  19. Sulla-Menashe, D., M.A. Friedl, O.N. Krankina, A. Baccini, C.E. Woodcock, A. Sibley, G. Sun, V. Kharuk, and V. Elsakov, 2011. Hierarchical mapping of Northern Eurasian land cover using MODIS data, Remote Sensing of Environment, 115(2): 392-403. https://doi.org/10.1016/j.rse.2010.09.010
  20. Wardlow, B.D. and S.L. Egbert, 2008. Large-area crop mapping using time-series MODIS 250m NDVI data: An assessment for the U.S. Central Great Plains, Remote Sensing of Environment, 112(3): 1096-1116. https://doi.org/10.1016/j.rse.2007.07.019
  21. Wessels, K., R. De Fries, J. Dempewolf, L. Anderson, A. Hansen, S. Powell, and E. Moran, 2004. Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone Ecosystem, USA and Para State, Brazil, Remote Sensing of Environment, 92(1): 67-83. https://doi.org/10.1016/j.rse.2004.05.002
  22. Xavier, A.C., B.F. Rudorff, Y.E. Shimabukuro, L.M.S. Berka, and M.A. Moreira, 2006. Multi temporal analysis of MODIS data to classify sugarcane crop, International Journal of Remote Sensing, 27(4): 755-768. https://doi.org/10.1080/01431160500296735
  23. Xie, Y., Z. Sha, and M. Yu, 2008. Remote sensing imagery in vegetation mapping: A review, Journal of Plant Ecology, 1(1): 9-23. https://doi.org/10.1093/jpe/rtm005
  24. Yu, Q., P. Gong, N. Clinton, G. Biging, M. Kelly, and D. Schirokauer, 2006. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery, Photogrammetric Engineering and Remote Sensing, 72(7): 799-811. https://doi.org/10.14358/PERS.72.7.799
  25. Zhang, J. and G. Foody, 2001. Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: Statistical and artificial neural network approaches, International Journal of Remote Sensing, 22(4): 615-628. https://doi.org/10.1080/01431160050505883
  26. Zhang, T., J. Qi, Y. Gao, Z. Ouyang, S. Zeng, and B. Zhao, 2015. Detecting soil salinity with MODIS time series VI data, Ecological Indicators, 52: 480-489. https://doi.org/10.1016/j.ecolind.2015.01.004
  27. Zhong, C., C. Wang, and C. Wu, 2015. MODIS-based fractional crop mapping in the US midwest with spatially constrained phenological mixture analysis, Remote Sensing, 7(1): 512-529. https://doi.org/10.3390/rs70100512

Cited by

  1. 고해상도 다중시기 위성영상을 이용한 밭작물 분류: 마늘/양파 재배지 사례연구 vol.33, pp.5, 2016, https://doi.org/10.7780/kjrs.2017.33.5.2.2
  2. 계층분류 기법을 이용한 위성영상 기반의 동계작물 구분도 작성 vol.33, pp.5, 2016, https://doi.org/10.7780/kjrs.2017.33.5.2.7
  3. 준감독 학습과 공간 유사성을 이용한 비접근 지역의 작물 분류 - 북한 대홍단 지역 사례 연구 - vol.33, pp.5, 2017, https://doi.org/10.7780/kjrs.2017.33.5.2.8