DOI QR코드

DOI QR Code

Variable Step Size Adaptive Algorithm using Instantaneous Absolute Value Based on System Generator

시스템 제너레이터 환경에서 순시 절대값을 이용한 가변스텝사이즈 적응알고리즘

  • 이채욱 (대구대학교 정보통신공학부) ;
  • 류정탁 (대구대학교 전자전기공학부)
  • Received : 2016.05.03
  • Accepted : 2016.06.14
  • Published : 2016.06.30

Abstract

As the convergence speed of time domain adaptive algorithm on the LMS(Least Mean Square) becomes slow when eigen value distribution width is spread, So variable step size algorithm is used widely. But it needs a lot of calculation load. In this paper we consider new algorithm, which can reduce calculations and improve convergence speed, uses instantaneous absolute value of average noise signal adapting the exponential function. For the performance of proposed algorithm is tested and simulated to system generator. As the result we show the variable step size adaptive algorithm in proportion to instantaneous absolute value is more stable and efficient than others.

LMS 알고리즘에서, 시간영역의 적응알고리즘은 입력신호의 고유치 분포 폭이 넓게 분포되면, 수렴속도가 느려지기 때문에 가변 스텝 사이즈가 많이 사용된다. 그러나 이 경우 많은 계산량이 필요하다. 본 논문에서는 시간영역의 적응 알고리즘을 변환영역에서 수행한다. 그리고 수렴성능 향상과 계산량을 줄이기 위하여 평균오차의 순시 절대 값을 exponential 함수에 적용한 새로운 알고리즘을 제안한다. 그리고 시스템 제너레이터를 이용하여 시뮬레이션 및 검증을 하였다. 그 결과 순시 절대 값에 비례하여 변화하는 가변스텝사이즈의 적응알고리즘이 기존의 알고리즘과 비교하여 보다 안정되고 성능이 우수함을 입증하였다.

Keywords

References

  1. Diniz, Adaptive filtering, algorithms and practical implementation, Kluwer Academic Publishers, 2002.
  2. K. Mayyas, "Performance analysis of the deficient length LMS adaptive algorithm", IEEE Transactions on Signal Processing, Vo. 53, No. 8, pp 2727-2734, 2005 https://doi.org/10.1109/TSP.2005.850347
  3. J. A. Srar, K. S. Chung and A. Mansour, "Adaptive Array Beamforming Using a Combined LMS-LMS Algorithm", IEEE Transactions on Antennas and Propagation, Vol. 58, Issue 11, pp 3545 - 3557. 2010 https://doi.org/10.1109/TAP.2010.2071361
  4. S. Haykin, Adaptive Filter Theory, Prentice Hall. 2008.
  5. G. Sumit, S, Shekha and S. Anurag , "Real time Implementation of variable step size LMS adaptive filering algorithm", IUP Journal of EEE. Signal Processing, vol.8, pp7-16, July, 2015.
  6. H. Hsu, L and Junghsi , "A new variable step size NLMS algorithm and its performance analysis", IEEE Transactions on Signal Processing, vol. 60, pp 2055-2060, April, 2012. https://doi.org/10.1109/TSP.2011.2181505
  7. S. B. Gelfand, Yongbin Wei and J. V. Krogmeier, "The stability of variable step-size LMS algorithms", IEEE Transactions on Signal Processing, Vol. 47, Issue 12, pp 3277 - 3288, 1999 https://doi.org/10.1109/78.806072
  8. A. Gupta and S. Joshi, "Variable Step-Size LMS Algorithm for Fractal Signals", IEEE Transactions on Signal Processing, Vol. 56, Issue 4, pp. 1411 - 1420, 2008 https://doi.org/10.1109/TSP.2007.909374
  9. H. Boyan, X. Yegul, M., Yaping and S. Jinwel, "A simplified variable step size LMS algorithm for Fourier analysis and its statistical properties" Signal processing, December 2015.
  10. R. C. Bilcu, P. Kuosmanen and K. Egiazarian, "A new variable step LMS algorithm for transform domain" Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on, Vol. 3, pp. 1161-1164, 2001.
  11. N.J. Hoboken, Advanced FPGA design, Willeyl. 2007.
  12. M. Hamouda; H. F. Blanchette; K. Al-Haddad; F. Fnaiech, "An Efficient DSP-FPGA-Based Real-Time Implementation Method of SVM Algorithms for an Indirect Matrix Converter", IEEE Transactions on Industrial Electronics, Vol. 58, Issue 11, pp. 5024 - 5031, 2011 https://doi.org/10.1109/TIE.2011.2159952
  13. IP cores for Xilinx FPGA, Mena Report, Oct., 2015.