References
- Akbas, S.D. (2016), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 1750033.
- Akgoz, B. and Civalek, O. (2012), "Analysis of microtubules based on strain gradient elasticity and modified couple stress theories", Adv. Vib. Eng., 11(4), 385-400.
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Alashti, R.A. and Abolghasemi, A.H. (2013), "A size-dependent Bernoulli-Euler beam formulation based on a new model of couple stress theory", Int J. Eng. Tran. C: Aspect., 27(6), 951.
- Ansari, R., Ashrafi, M.A. and Arjangpay, A. (2015), "An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory", Appl. Math. Model., 39(10-11), 3050-3062. https://doi.org/10.1016/j.apm.2014.11.029
- Ansari, R., Gholami, R. and Darabi, M.A. (2012), "A nonlinear Timoshenko beam formulation based on strain gradient theory", J. Mech. Mater. Struct., 7(2), 95-211.
- Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size dependent behavior of functionally graded micro-beams", Mater. Des., 31, 2324-3249. https://doi.org/10.1016/j.matdes.2009.12.006
- Ataei, H., Beni, Y.T. and Shojaeian, M. (2016), "The effect of small scale and intermolecular forces on the pull-in instability and free vibration of functionally graded nano-switches", J. Mech. Sci. Tech., 30(4), 1799-1816. https://doi.org/10.1007/s12206-016-0337-9
- Beni, Y.T. and Zeverdejani, M.K. (2015), "Free vibration of microtubules as elastic shell model based on modified couple stress theory", J. Mech. Med BioI., 15(03), 1550037. https://doi.org/10.1142/S0219519415500372
- Beni, Y.T., Jafari, A. and Razavi, H. (2015), "Size effect on free transverse vibration of cracked nano-beams using couple stress theory", Int. J. Eng., 28(2), 296-304.
- Beni, Y.T., Mehralian, F. and Zeighampour, H. (2016), "The modified couple stress functional graded cylindrical thin shell formulation", Mech. Adv. Mater. Struct., 23(7), 791-801. https://doi.org/10.1080/15376494.2015.1029167
- Broek, D. (1986), Elementary engineering fracture mechanics, Martinus Nijhoff Publisher, Dordrecht.
- Dai, H.L., Wang, Y.K. and Wang, L. (2015), "Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory", Int. J. Eng. Sci., 94, 103-112. https://doi.org/10.1016/j.ijengsci.2015.05.007
- Daneshmehr, A.R., Abadi, M.M. and Rajabpoor, A. (2013), "Thermal effect on static bending, vibration and buckling of reddy beam based on modified couple stress theory", Appl. Mech. Mater., 332,331-338. https://doi.org/10.4028/www.scientific.net/AMM.332.331
- Darijani, H. and Mohammadabadi, H. (2014), "A new deformation beam theory for static and dynamic analysis of micro beams", Int. J. Mech. Sci., 89, 31-39. https://doi.org/10.1016/j.ijmecsci.2014.08.019
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Fang, T.H. and Chang, W.J. (2003b), "Sensitivity analysis of scanning near-field optical microscope probe", Opt. Laser Tech., 35(4), 267-271. https://doi.org/10.1016/S0030-3992(03)00004-5
- Fang, T.H., Chang, W.J. and Liao, S.C. (2003a), "Simulated nanojet ejection process by spreading droplets on a solid surface", J. Phys. Condens. Matter., 15(49), 8263-8271. https://doi.org/10.1088/0953-8984/15/49/005
- Farokhi, H. and Ghayesh, M.H. (2015), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
- Fleck, H.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solid, 41, 1825-57. https://doi.org/10.1016/0022-5096(93)90072-N
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
- Hasheminejad, B.S.M., Gheshlaghi, B., Mirzaei, Y. and Abbasion, S. (2011), "Free transverse vibrations of cracked nanobeams with surface effects", Thin Solid. Film., 519(8), 2477-2482. https://doi.org/10.1016/j.tsf.2010.12.143
- Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T. (2010), "Investigation of the size dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48, 1985-1994. https://doi.org/10.1016/j.ijengsci.2010.06.003
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of size-dependent microbeams", Physica E: Low Dimens. Syst. Nanostroct, 43(7), 1387-1393. https://doi.org/10.1016/j.physe.2011.03.009
- Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46, 417-431. https://doi.org/10.12989/sem.2013.46.3.417
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46, 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002
- Kong, S.L. (2013), "Size effect on natural frequency of cantilever micro-beams based on a modified couple stress theory", Adv. Mater. Res., 694-697, 221-224. https://doi.org/10.4028/www.scientific.net/AMR.694-697.221
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Liu, S.T., Qi, S.H. and Zhang, W.M. (2013), "Vibration behavior of a cracked micro-cantilever beam under electrostatic excitation", J. Vib. Shock., 32(17), 41-45.
- Loya, J., Lopez-Puente, J., Zaera, R. and Fernandez-Saez, J. (2009), "Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model", J. Appl. Phys., 105(4), 044309. https://doi.org/10.1063/1.3068370
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid, 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Exp. Mech., 3, 1-7. https://doi.org/10.1007/BF02327219
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Rat. Mech. Anal., 11, 415-48. https://doi.org/10.1007/BF00253946
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng, 16, 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015
- Pei, J., Tian, F. and Thundat, T. (2004), "Glucose biosensor based on the microcantilever", Anal. Chem., 76, 292-297. https://doi.org/10.1021/ac035048k
- Rezazadeh, G., Tahmasebi, A. and Zubtsov, M. (2006), "Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage", J. Microsyst. Tech., 12, 1163-1170. https://doi.org/10.1007/s00542-006-0245-5
- Sedighi, H.M. and Bozorgmehri, A. (2016), "Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory", Acta Mechanica, 227(6), 575-1591.
- Sedighi, H.M., Changizian, M. and Noghrehabadi, A. (2014), "Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory", Lat. Am. J. Solid Struct., 11(5), 810-825. https://doi.org/10.1590/S1679-78252014000500005
- Senturia S.D. (1998), "CAD challenges for microsensors, microactuators, and microsystems", Froc. IEEE, 86, 1611-1626.
- Shojaeian, M. and Beni, Y.T. (2015), "Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges", Sens. Actuat. A: Fhys., 232, 49-62. https://doi.org/10.1016/j.sna.2015.04.025
- Shojaeian, M., Beni, Y.T. and Ataei, H. (2016), "Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory", Acta Astronautica, 118, 62-71. https://doi.org/10.1016/j.actaastro.2015.09.015
- Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48, 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027
- Simsek, M., Kocaturk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct, 95, 740-747. https://doi.org/10.1016/j.compstruct.2012.08.036
- Tada, H., Paris, P.C. and Irwin, G.R. (1985), The Stress Analysis of Cracks Handbook, Paris Production Incorporated and Del Research Corporation.
- Tang, M., Ni, Q., Wang, L., Luo, Y. and Wang, Y. (2014), "Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory", Int. J. Eng. Sci., 85, 20-30. https://doi.org/10.1016/j.ijengsci.2014.07.006
- Torabi, K. and Nafar Dastgerdi, J. (2012), "An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model", Thin Solid. Film., 520(21), 6595-6602. https://doi.org/10.1016/j.tsf.2012.06.063
- Toupin, R.A. (1962), "Elastic materials with couple stresses", Arch. Rat. Mech. Anal., 11, 385-414. https://doi.org/10.1007/BF00253945
- Wang, L. (2010), "Size-dependent vibration characteristics of fluid-conveying microtubes", J. Fluid. Struct., 26, 675-684. https://doi.org/10.1016/j.jfluidstructs.2010.02.005
- Wang, L., Xu, Y.Y. and Ni, Q. (2013), "Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: a unified treatment", Int. J. Eng. Sci., 68, 1-10. https://doi.org/10.1016/j.ijengsci.2013.03.004
- Xia, W., Wang, L. and Yin, L. (2010), "Nonlinear non-classical microscale beams: static, bending, postbuckling and free vibration", Int. J. Eng. Sci., 48, 2044-053. https://doi.org/10.1016/j.ijengsci.2010.04.010
- Yang, F., Chong, A., Lam, D. and Tong, P. (2002) "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Zeighampour, H. and Beni, Y.T. (2014), "Analysis of conical shells in the framework of coupled stresses theory", Int. J. Eng. Sci., 81, 107-122. https://doi.org/10.1016/j.ijengsci.2014.04.008
- Zeighampour, H. and Beni, Y.T. (2015), "A shear deformable cylindrical shell model based on couple stress theory", Arch. Appl. Mech., 85(4), 539-553. https://doi.org/10.1007/s00419-014-0929-8
- Zeighampour, H., Beni, Y.T. and Mehralian, F. (2015), "A shear deformable conical shell formulation in the framework of couple stress theory", Acta Mechanica, 226(8), 2607-2629. https://doi.org/10.1007/s00707-015-1318-2
- Zook, J.D., Burns, D.W., Guckel, H., Smegowsky, J.J., Englestad, R.L. and Feng, Z. (1992), "Characteristics of polysilicon resonant microbeams", Sens. Actuat., 35, 31-59.
Cited by
- Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1125
- A semi-continuum-based bending analysis for extreme-thin micro/nano-beams and new proposal for nonlocal differential constitution vol.172, 2017, https://doi.org/10.1016/j.compstruct.2017.03.070
- Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
- Dynamic responses of a beam with breathing cracks by precise integration method vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.891
- Forced vibration analysis of cracked nanobeams vol.40, pp.8, 2018, https://doi.org/10.1007/s40430-018-1315-1
- Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.351
- A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation vol.13, pp.5, 2016, https://doi.org/10.12989/eas.2017.13.5.509
- Forced vibration analysis of cracked functionally graded microbeams vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.039
- The discrete element method simulation and experimental study of determining the mode I stress-intensity factor vol.66, pp.3, 2018, https://doi.org/10.12989/sem.2018.66.3.379
- Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.567
- Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2016, https://doi.org/10.12989/anr.2018.6.3.219
- Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane vol.72, pp.6, 2016, https://doi.org/10.12989/sem.2019.72.6.775
- A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with ene vol.73, pp.3, 2016, https://doi.org/10.12989/sem.2020.73.3.287
- Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method vol.8, pp.3, 2016, https://doi.org/10.12989/anr.2020.8.3.215
- Modal analysis of viscoelastic nanorods under an axially harmonic load vol.8, pp.4, 2020, https://doi.org/10.12989/anr.2020.8.4.277
- Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.583
- Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.117
- A Force-Based Rectangular Cracked Element vol.13, pp.4, 2016, https://doi.org/10.1142/s1758825121500472
- Size-dependent dynamics of double-microbeam systems with various boundary conditions via modified couple stress theory vol.27, pp.8, 2016, https://doi.org/10.1007/s00542-020-05183-z
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
- Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2016, https://doi.org/10.12989/anr.2021.11.2.183
- An investigation of mechanical properties of kidney tissues by using mechanical bidomain model vol.11, pp.2, 2016, https://doi.org/10.12989/anr.2021.11.2.193