Acknowledgement
Supported by : Technological Council of Turkey (TUBITAK), Istanbul Technical University
References
- Abramowitz, M. and Stegun, I.A. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing, Dover, New York, NY, USA.
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Alotta, G., Failla, G. and Zingales, M. (2014), "Finite element method for a nonlocal Timoshenko beam model", Finite Elem. Anal. Des., 89, 77-92. https://doi.org/10.1016/j.finel.2014.05.011
- Arash, B., Wang, Q. and Duan, W.H. (2011), "Detection of gas atoms via vibration of graphenes", Phys. Lett. A, 375(24), 2411-2415. https://doi.org/10.1016/j.physleta.2011.05.009
- Behera, L. and Chakraverty, S. (2014), "Free vibration of nonhomogeneous Timoshenko nanobeams", Meccanica, 49(1), 51-67. https://doi.org/10.1007/s11012-013-9771-2
- Berrabah, H.M., Tounsi, A., Semmah, A. and Bedia, E.A.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
- Bradshaw, R.D., Fisher, F.T. and Brinson, L.C. (2003), "Fiber waviness in nanotube-reinforced polymer composites-II: modeling via numerical approximation of the dilute strain concentration tensor", Compos. Sci. Technol., 63(11), 1705-1722. https://doi.org/10.1016/S0266-3538(03)00070-8
- Craighead, H.G. (2000), "Nanoelectromechanical systems", Science, 290(5496), 1532-153. https://doi.org/10.1126/science.290.5496.1532
- Ekinci, K.L. (2005), "Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS)", Small, 1(8-9), 786-797. https://doi.org/10.1002/smll.200500077
- Eringen, A.C. (1983), "Linear theory of nonlocal elasticity and dispersion of plane waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
- Fisher, F.T., Bradshaw, R.D. and Brinson, L.C. (2003), "Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties", Compos. Sci. Technol., 63(11), 1689-1703. https://doi.org/10.1016/S0266-3538(03)00069-1
- Guo, R., Barisci, J.N., Innis, P.C., Too, C.O., Wallace, G.G. and Zhou, D. (2000), "Electrohydrodynamic polymerization of 2-methoxyaniline-5-sulfonic acid", Synthetic Met., 114(3), 267-272. https://doi.org/10.1016/S0379-6779(00)00242-3
- Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002
- Hu, Y.G., Liew, K.M. and Wang, Q. (2009), "Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes", J. Appl. Phys., 106(4):044301. https://doi.org/10.1063/1.3197857
- Huang, C., Ye, C., Wang, S., Stakenborg, T. and Lagae, L. (2012), "Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection", Appl. Phys. Lett., 100, 173114. https://doi.org/10.1063/1.4707382
- Joshi, A.Y., Sharma, S.C. and Harsha, S.P. (2010) "Dynamic analysis of a clamped wavy single walled carbon nanotube based nanomechanical sensors", J. Nanotechnol. Eng. Med., 1, 031007-7. https://doi.org/10.1115/1.4002072
- Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K. and Dai, H.J. (2000), "Nanotube molecular wires as chemical sensors", Science, 287, 622-625. https://doi.org/10.1126/science.287.5453.622
- Kong, X.Y., Ding, Y., Yang, R. and Wang, Z.L. (2004), "Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts", Science, 303, 1348-1351. https://doi.org/10.1126/science.1092356
- Li, C. (2013), "Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory", Struct. Eng. Mech., 48(3), 415-434. https://doi.org/10.12989/sem.2013.48.3.415
- Li, C. (2014), "A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries", Compos. Struct., 118, 607-621. https://doi.org/10.1016/j.compstruct.2014.08.008
- Li, C. and Chou, T.W. (2003), "Single-walled carbon nanotubes as ultra-high frequency nanomechanical resonators", Phys. Rev. B, 68(7), 073405. https://doi.org/10.1103/PhysRevB.68.073405
- Li, C., Li, S., Yao, L.Q. and Zhu, Z.K. (2015a),"Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models", Appl. Math. Model., 39, 4570-4585. https://doi.org/10.1016/j.apm.2015.01.013
- Li, C., Yao, L.Q., Chen, W.Q and Li, S. (2015b), "Comments on nonlocal effects in nano-cantilever beams", Int. J. Eng. Sci., 87, 47-57. https://doi.org/10.1016/j.ijengsci.2014.11.006
- Liu, Y.P. and Reddy, J.N. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stab. Dyn., 11(3), 495-512.
- Mayoof, F.N. and Hawwa, M.A. (2009), "Chaotic behavior of a curved carbon nanotube under harmonic excitation", Chaos Solit. Fract., 42(3), 1860-1867. https://doi.org/10.1016/j.chaos.2009.03.104
- McFarland, A.W. and Colton, J.S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15, 1060-1067. https://doi.org/10.1088/0960-1317/15/5/024
- Paola, M.D., Failla, G. and Zingales, M. (2013), "Non-local stiffness and damping models for shear-deformable beams", Eur. J. Mech. A-Solid., 40, 69-83. https://doi.org/10.1016/j.euromechsol.2012.12.009
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Solid. Struct., 41, 305-312.
- Polizzotto, C., Fuschi, P. and Pisano, A.A. (2006), "A nonhomogeneous nonlocal elasticity model", Eur. J. Mech. A-Solid., 25(2), 308-333. https://doi.org/10.1016/j.euromechsol.2005.09.007
- Povstenko, Y.Z. (1995), "Straight disclinations in nonlocal elasticity", Int. J. Eng. Sci., 33(4), 575-582. https://doi.org/10.1016/0020-7225(94)00070-0
- Pradhan, S.C. and Sarkar, A. (2009), "Analyses of tapered fgm beams with nonlocal theory", Struct. Eng. Mech., 32(6), 811-833. https://doi.org/10.12989/sem.2009.32.6.811
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Roukes, M. (2001), "Nanoelectromechanical systems face the future", Phys. World, 14, 25-31
- Sudak, L.J. (2003), "Column buckling of multi-walled carbon nanotubes using nonlocal elasticity", J. Appl. Phys., 94, 7281. https://doi.org/10.1063/1.1625437
- Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4) 755-769. https://doi.org/10.12989/sem.2015.54.4.755
- Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.W. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0
- Tufekci, E. (2001), "Exact solution of free in-plane vibration of shallow circular arches", Int. J. Struct. Stab. Dyn., 1, 409-428. https://doi.org/10.1142/S0219455401000226
- Tufekci, E. and Arpaci, A. (2006), "Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations", Struct. Eng. Mech., 22(2), 131-150. https://doi.org/10.12989/sem.2006.22.2.131
- Wang, L.F. and Hu, H.Y. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B, 71(19) 195412. https://doi.org/10.1103/PhysRevB.71.195412
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 89, 124301.
- Wang, Q. and Shindo, Y. (2006), "Nonlocal continuum models for carbon nanotubes subjected to static loading", J. Mech. Mater. Struct., 1(4), 663-680. https://doi.org/10.2140/jomms.2006.1.663
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
- Zhang, Z., Wang C.M. and Challamel, N. (2015), "Eringen's length-scale coefficients for vibration and buckling of nonlocal rectangular plates with simply supported edges", J. Eng. Mech., 141(2), 04014117. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000838
- Zhao, Q., Gan, Z.H. and Zhuang, O.K. (2002), "Electrochemical sensors based on carbon nanotubes", Electroanal., 14(23), 1609-13. https://doi.org/10.1002/elan.200290000
Cited by
- Modeling and analysis of out-of-plane behavior of curved nanobeams based on nonlocal elasticity vol.119, 2017, https://doi.org/10.1016/j.compositesb.2017.03.050
- Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
- Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory vol.66, pp.5, 2016, https://doi.org/10.12989/sem.2018.66.5.621
- Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory vol.67, pp.4, 2016, https://doi.org/10.12989/sem.2018.67.4.417
- Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials vol.7, pp.1, 2016, https://doi.org/10.12989/anr.2019.7.1.051
- A novel meshless particle method for nonlocal analysis of two-directional functionally graded nanobeams vol.41, pp.7, 2016, https://doi.org/10.1007/s40430-019-1799-3