DOI QR코드

DOI QR Code

Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation

  • 투고 : 2016.04.11
  • 심사 : 2016.06.21
  • 발행 : 2016.03.25

초록

Flexural bending analysis of perfect and imperfect functionally graded materials plates under hygro-thermo-mechanical loading are investigated in this present paper. Due to technical problems during FGM fabrication, porosities and micro-voids can be created inside FGM samples which may lead to the reduction in density and strength of materials. In this investigation, the FGM plates are assumed to have even and uneven distributions of porosities over the plate cross-section. The modified rule of mixture is used to approximate material properties of the FGM plates including the porosity volume fraction. In order the elastic coefficients, thermal coefficient and moisture expansion coefficient of the plate are assumed to be graded in the thickness direction. The elastic foundation is modeled as two-parameter Pasternak foundation. The equilibrium equations are given and a number of examples are solved to illustrate bending response of Metal-Ceramic plates subjected to hygro-thermo-mechanical effects and resting on elastic foundations. The influences played by many parameters are investigated.

키워드

참고문헌

  1. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "Thermal buckling of functionally graded plates using a n-order four variable refined theory", Adv. Mater. Res., 4(1), 31-44. https://doi.org/10.12989/amr.2015.4.1.31
  2. Bahrami, A. and Nosier, A. (2007), "Interlaminar hygrothermal stresses in laminated plates", Int. J. Solid. Struct., 44(25), 8119-8142. https://doi.org/10.1016/j.ijsolstr.2007.06.004
  3. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B: Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  4. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazilian Society Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  5. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  6. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2015), "A higher order shear deformation model for bending analysis of functionally graded plates", Transact. Indian Inst. Metal., 68(1), 7-16. https://doi.org/10.1007/s12666-014-0428-1
  7. Benkhedda, A. and Tounsi, A. (2008), "Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates", Compos. Struct., 82(4), 629-635. https://doi.org/10.1016/j.compstruct.2007.04.013
  8. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  9. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting onWinkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  10. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  11. Buczkowski, R. and Torbacki, W. (2001), "Finite element modelling of thick plates on two-parameter elastic foundation", Int. J. Numer. Analy. Method. Geomech., 25(14), 1409-1427. https://doi.org/10.1002/nag.187
  12. Chucheepsakul, S. and Chinnaboon, B. (2003), "Plates on two-parameter elastic foundations with nonlinear boundary conditions by the boundary element method", Comput. Struct., 81(30), 2739-2748. https://doi.org/10.1016/S0045-7949(03)00340-7
  13. Daouadji, T.H. and Tounsi, A. (2013), "Analytical solution for bending analysis of functionally graded plates", Sci. Iranica, 20(3), 516-523.
  14. Daouadji, T.H., Henni, A.H., Tounsi, A. and El Abbes, A.B. (2012), "A new hyperbolic shear deformation theory for bending analysis of functionally graded plates", Model. Simul. Eng., 2012, 29.
  15. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  16. Liu, F.L. (2000), "Rectangular thick plates on Winkler foundation: differential quadrature element solution", Int. J. Solid. Struct., 37(12), 1743-1763. https://doi.org/10.1016/S0020-7683(98)00306-0
  17. Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  18. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  19. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005
  20. Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25-34. https://doi.org/10.1016/S0263-8223(01)00182-9
  21. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  22. Shen, H.S. (1999), "Nonlinear bending of Reissner-Mindlin plates with free edges under transverse and in-plane loads and resting on elastic foundations", Int. J. Mech. Sci., 41(7), 845-864. https://doi.org/10.1016/S0020-7403(98)00060-5
  23. Suresh, S. and Mortensen, A. (1998), "Fundamental of functionally graded materials", Maney, London.
  24. Tanigawa, Y. (1995), "Some basic thermoelastic problems for nonhomogeneous structural materials", Appl. Mech. Rev., 48(6), 287-300. https://doi.org/10.1115/1.3005103
  25. Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), "Theory of plates and shells", McGraw-Hill, New York.
  26. Tlidji, Y., Daouadji, T.H., Hadji, L., Tounsi, A. and Bedia, E.A.A. (2014), "Elasticity solution for bending response of functionally graded sandwich plates under thermomechanical loading", J. Therm. Stress., 37(7), 852-869. https://doi.org/10.1080/01495739.2014.912917
  27. Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerospace Sci. Tech., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  28. Tungikar, V.B. and Rao, K.M. (1994), "Three dimensional exact solution of thermal stresses in rectangular composite laminate", Compos. Struct., 27(4), 419-430. https://doi.org/10.1016/0263-8223(94)90268-2
  29. Voyiadjis, G.Z. and Kattan, P.I. (1986), "Thick rectangular plates on an elastic foundation", J. Eng. Mech., 112(11), 1218-1240. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1218)
  30. Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049
  31. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  32. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
  33. Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51(11), 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026
  34. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO 2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2
  35. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerospace Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.205
  2. Elastic-plastic fracture of functionally graded circular shafts in torsion vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.299
  3. Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2016, https://doi.org/10.12989/amr.2018.7.2.119
  4. Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate vol.16, pp.5, 2016, https://doi.org/10.12989/eas.2019.16.5.601
  5. Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.535
  6. Nonlinear Hygro-Thermo-Mechanical Analysis of Functionally Graded Plates Using a Fifth-Order Plate Theory vol.44, pp.10, 2016, https://doi.org/10.1007/s13369-019-03894-8
  7. Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations vol.72, pp.1, 2016, https://doi.org/10.12989/sem.2019.72.1.061
  8. Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate vol.72, pp.3, 2016, https://doi.org/10.12989/sem.2019.72.3.293
  9. Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study vol.72, pp.4, 2019, https://doi.org/10.12989/sem.2019.72.4.409
  10. Analysis of functionally graded plates resting on elastic foundation and subjected to non-linear hygro-thermo-mechanical loading vol.1, pp.4, 2016, https://doi.org/10.1007/s42791-019-00024-1
  11. Analytical solution using fifth order shear and normal deformation theory for FG plates resting on elastic foundation subjected to hygro-thermo-mechanical loading vol.21, pp.2, 2016, https://doi.org/10.1016/j.matpr.2020.01.010
  12. A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation vol.34, pp.4, 2016, https://doi.org/10.12989/scs.2020.34.4.511
  13. Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM vol.75, pp.5, 2020, https://doi.org/10.12989/sem.2020.75.5.633
  14. Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate vol.9, pp.5, 2016, https://doi.org/10.12989/csm.2020.9.5.473
  15. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2016, https://doi.org/10.12989/amr.2020.9.4.265
  16. Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2016, https://doi.org/10.12989/csm.2020.9.6.499
  17. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  18. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  19. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2016, https://doi.org/10.12989/scs.2021.38.1.001
  20. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2016, https://doi.org/10.12989/sem.2021.77.2.217
  21. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2016, https://doi.org/10.12989/csm.2021.10.1.061
  22. Static analysis of simply supported porous sandwich plates vol.77, pp.4, 2016, https://doi.org/10.12989/sem.2021.77.4.549
  23. Modal analysis of cylindrical panels at elevated temperatures under nonuniform heating conditions: Experimental investigation vol.235, pp.5, 2021, https://doi.org/10.1177/0954406220936738
  24. Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2016, https://doi.org/10.12989/sem.2021.77.6.797
  25. Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2016, https://doi.org/10.12989/sem.2021.77.6.797
  26. Computation of dimensional variations on the structural analysis of multi-cell aircraft box beams with python scripting vol.93, pp.5, 2016, https://doi.org/10.1108/aeat-03-2021-0077