References
- Ahmed, S.R., Idris, B.M. and Uddin, M.W. (1996), "Numerical solution of both ends fixed deep beams", Comput. Struct., 61(1), 21-29. https://doi.org/10.1016/0045-7949(96)00029-6
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Ben-Oumrane, S., Abedlouahed, T., Ismail, M., Mohamed, B.B., Mustapha, M. and El Abbas, A.B. (2009), "A theoretical analysis of flexional bending of Al/Al 2 O 3 S-FGM thick beams", Comput. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001
- Daouadji, T.H. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631
- Ding, H.J., Huang, D.J. and Chen, W.Q. (2007), "Elasticity solutions for plane anisotropic functionally graded beams", Int. J. Solid. Struct., 44(1), 176-196. https://doi.org/10.1016/j.ijsolstr.2006.04.026
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Piezoelasticity solutions for functionally graded piezoelectric beams", Smart Mater. Struct., 16(3), 687. https://doi.org/10.1088/0964-1726/16/3/015
- Lekhnitskii, S.G. (1968), Anisotropic plate, Gordon and Breach, New York.
- Lin-nan, Z. and Zhi-fei, S. (2003), "Analytical solution of a simply supported piezoelectric beam subjected to a uniformly distributed loading", Appl. Math. Mech., 24(10), 1215-1223. https://doi.org/10.1007/BF02438110
- Sankar, B.V. and Tzeng, J.T. (2002), "Thermal stresses in functionally graded beams", AIAA J., 40(6), 1228-1232. https://doi.org/10.2514/2.1775
- Shi, Z.F. and Chen, Y. (2004), "Functionally graded piezoelectric cantilever beam under load", Arch. Appl. Mech., 74(3-4), 237-247. https://doi.org/10.1007/s00419-004-0346-5
- Silverman, I.K. (1964), "Orthotropic beams under polynomial loads", J. Eng. Mech., 90(5), 293-320.
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of elasticity, 3rd Ed., McGraw-Hill, New York.
- Tlidji, Y., Daouadji, T.H., Hadji, L., Tounsi, A. and Bedia, E.A.A. (2014), "Elasticity solution for bending response of functionally graded sandwich plates under thermomechanical loading", J. Therm. Stresses, 37(7), 852-869. https://doi.org/10.1080/01495739.2014.912917
- Tounsi, A., Bourada, M., Kaci, A. and Houari, M.S.A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Venkataraman, S. and Sankar, B.V. (2003), "Elasticity solution for stresses in a sandwich beam with functionally graded core", AIAA J., 41(12), 2501-2505. https://doi.org/10.2514/2.6853
- Zhu, H. and Sankar, B.V. (2004), "A combined fourier series-glerkin method for the analysis of functionally graded beams", J. Appl. Mech., 71(3), 421-424. https://doi.org/10.1115/1.1751184
- Zoubida, K., Daouadji, T.H., Hadji, L., Tounsi, A. and El Abbes, A.B. (2015), "A new higher order shear deformation model of functionally graded beams based on neutral surface position", Transactions of the Indian Institute of Metals, 1-9.
Cited by
- Elastic-plastic fracture of functionally graded circular shafts in torsion vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.299
- Transient thermo-mechanical response of a functionally graded beam under the effect of a moving heat source vol.6, pp.1, 2016, https://doi.org/10.12989/amr.2017.6.1.027
- Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2016, https://doi.org/10.12989/amr.2018.7.2.119
- Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.269
- Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate vol.16, pp.5, 2016, https://doi.org/10.12989/eas.2019.16.5.601
- Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.535
- Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study vol.72, pp.4, 2019, https://doi.org/10.12989/sem.2019.72.4.409
- Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2016, https://doi.org/10.12989/amr.2020.9.4.265
- Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2016, https://doi.org/10.12989/csm.2020.9.6.499
- Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
- Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2016, https://doi.org/10.12989/sem.2021.77.2.217
- Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2016, https://doi.org/10.12989/csm.2021.10.1.061
- Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2016, https://doi.org/10.12989/sem.2021.77.6.797
- Multilevel Analysis of Strain Rate Effect on Visco-Damage Evolution in Short Random Fiber Reinforced Polymer Composites vol.36, pp.2, 2016, https://doi.org/10.1515/ipp-2020-4045