DOI QR코드

DOI QR Code

Optical Absorption Enhancement for Ultrathin c-Si Solar Cells using Ag Nanoparticle and Nano-hole Arrays

Ag 나노입자와 나노홀 배열구조를 이용한 초박형 단결정 Si 태양전지의 광흡수 증진

  • Kim, Sujung (Department of Physics, Ewha Womans University) ;
  • Cho, Yunae (Department of Physics, Ewha Womans University) ;
  • Sohn, Ahrum (Department of Physics, Ewha Womans University) ;
  • Kim, Dong-Wook (Department of Physics, Ewha Womans University)
  • 김수정 (이화여자대학교 물리학과) ;
  • 조윤애 (이화여자대학교 물리학과) ;
  • 손아름 (이화여자대학교 물리학과) ;
  • 김동욱 (이화여자대학교 물리학과)
  • Received : 2016.04.26
  • Accepted : 2016.05.16
  • Published : 2016.06.30

Abstract

We investigated the influences of Ag nanoparticle (NP) arrays and surface nanohole (NH) patterns on the optical characteristics of 10-${\mu}m$-thick c-Si wafers using finite-difference time-domain (FDTD) simulations. In particular, we comparatively studied the plasmonic effects of both monomer arrays (MA) and heptamer arrays (HA) consisting of identical Ag NPs. HA improved the optical absorption of the c-Si wafers in much wider wavelength range than MA, with the help of hybridized plasmon modes. The light trapping capability of the NH array pattern is superior to that of the Ag plasmonic NPs. We also found that the addition of the Ag HA on the wafers with surface NH patterns further enhanced optical absorption: the expected short-circuit current density was as high as $34.96mA/cm^2$.

Keywords

References

  1. A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, "Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications", Nano Lett. 12, pp. 2792-2796, 2012. https://doi.org/10.1021/nl2045777
  2. Y. Kwon, C. Yang, S.-H. Yoon, H.-D. Um, J.-H. Lee, and B. Yoo, "Spalling of a thin Si layer by electrodeposit-assisted stripping", Appl. Phys. Exp. 6, p. 116502, 2013. https://doi.org/10.7567/APEX.6.116502
  3. Y. Cho, M. Gwon, H.-H. Park, J. Kim, and D.-W. Kim, "Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications", Nanoscale 6, pp. 9568-9573, 2014. https://doi.org/10.1039/C4NR01656D
  4. K. J. Yu, L. Gao, J. S. Park, Y. R. Lee, C. J. Corcoran, R. G. Nuzzo, D. Chanda, and J. A. Rogers, "Light trapping in ultrathin monocrystalline silicon solar cells", Adv. Energy Mater. 3, pp. 1401-1406 (2013). https://doi.org/10.1002/aenm.201300542
  5. E. Lee, K. Zhou, M. Gwon, J.-Y. Jung, J.-H. Lee, and D.-W. Kim, "Beneficial roles of Al back reflectors in optical absorption of Si nanowire array solar cells", J. Appl. Phys. 114, p. 093516, 2013. https://doi.org/10.1063/1.4820525
  6. Y. Chen, W. Han, and F. Yang, "Enhanced optical absorption in nanohole-textured silicon thin-film solar cells with rear-located metal particles", Opt. Lett. 38, pp. 3973-3975, 2013. https://doi.org/10.1364/OL.38.003973
  7. E. D. Palik, "Handbook of optical constants of solids III", Academic Press, New York, 1998.
  8. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals", Phys. Rev. B, 6, pp. 4370-4379, 1972. https://doi.org/10.1103/PhysRevB.6.4370
  9. H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices", Nat. Mater. 9, pp. 205-213, 2010. https://doi.org/10.1038/nmat2629
  10. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, "Transition from isolated to collective modes in plasmonic oligomers", Nano Lett. 10, pp. 2721-2726, 2010. https://doi.org/10.1021/nl101938p
  11. H. Jo, D. Yoon, A. Sohn, D.-W. Kim, Y. Choi, T. Kang, D. Choi, S.-W. Kim, and L. P. Lee, "Asymmetrically coupled plasmonic core and nanotriplet satellites", J. Phys. Chem. C, 118, pp. 18659-18667, 2014. https://doi.org/10.1021/jp505024k