The Effects of WO₃ Nanoparticles Addition to the TiO₂ Photoelectrode in Dye-Sensitized Solar Cells

Hong Ha Thi Vu · Yoon-Hwae Hwang* · Hyung-Kook Kim*

Department of Nano Energy Engineering and BK21 PLUS Nanoconvergence Technology Division, Pusan National University, Miryang 50463, Republic of Korea

ABSTRACT: Increasing the efficiency of dye-sensitized solar cells (DSSCs) by the fabrication of new photoelectrodes (PEs) is an important challenge. This study examined the photovoltaic parameters of DSSCs composed of a TiO_2 PE with WO₃ nanoparticles (NPs). A number of PEs with the same thickness but different concentrations of WO₃ NPs in the TiO_2 PE were prepared. The morphology and structural properties of the prepared PEs were examined by field-emission scanning electron microscopy and X-ray diffraction, respectively. The effects of the WO₃ NPs mixing concentration on the efficiency of DSSCs were investigated under simulated solar light irradiation.

Key words: TiO₂, WO₃, Dye-sensitized solar cells

Nomenclature

V_{OC} : open circuit voltage, V

 J_{SC} : short circuit current density, mA/cm²

FF : fill factor

PCE: power conversion efficiency, %

Subscript

DSSCs	: dye-sensitized solar cells		
PE	: photoelectrode		
NP	: nanoparticle		
FTO	: fluorine doped tin oxide		
N719	: di-tetrabutylammonium cis-bis(isothiocyanato)		
	bis(2.2'-bipyridyl-4, 4'-dicarboxylato) ruthenium		
	(II)		
EIS	: electrochemical impedance spectroscopy		
XRD	: X-ray diffraction		
FE-SEM	: field emission-scanning electron microscopy		
CB	: conduction band		
VB	: valance band		

1. Introduction

In recent years, solar energy as a green and sustainable energy source has attracted considerable attention in global energy. Among them, dye sensitized solar cells (DSSCs) are relatively inexpensive, efficient, relatively simple to fabricate and clean. Since the first report by Gratzel's group in 1991, DSSCs have been studied to improve their power conversion efficiency (PCE) and are currently undergoing rapid development for practical use¹⁾. A basic DSSC consists of a photoelectrode (PE) with a semiconducting thin film with an absorbed ruthenium complex dye deposited on a conducting substrate (fluorine doped tin oxide (FTO)), a counter electrode with FTO glass coated platinum, and a liquid electrolyte containing a redox couple. The light harvesting ability, amount of dye absorption, and the efficiency of charge separation are the three main factors that should be considered when attempting to improve the efficiency of solar cells. Many wide band gap semiconductors have been evaluated as potential electron acceptors for DSSCs, such as TiO₂, ZnO, SnO₂, and Nb₂O₅¹⁻⁵. Among them, TiO₂ has the highest efficiency because of its high dye absorption and rapid electron transport. Generally, the high efficiency of DSSCs with the photo injected electrons in the TiO2 are collected at the back contact of the PE in high yield. This requires that the transport time of electrons through the TiO₂ is much faster than their lifetime, which in turn, is determined by the recombination

© 2016 by Korea Photovoltaic Society

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*}Corresponding author: yhwang@pusan.ac.kr, hkkim@pusan.ac.kr Received April 29, 2016; Revised May 13, 2016; Accepted May 25, 2016

of electrons with the oxidized dye or with redox couple in the electrolyte. Therefore, it is a factor limiting the efficiency of DSSCs⁶⁰. In addition, a photosensitized dye usually uses a Ru-complex (such as N719, N3), which absorbs photons from sunlight and injects electrons into the conduction band of TiO₂. On the other hand, they only absorb visible light in the wavelength range, 300-800 nm^{7.8)}. Therefore, most of the solar light is not utilized. If the UV light can be absorbed, the photocurrent of the DSSCs will increase, leading to improved efficiency.

Tungsten oxide (WO₃) is one of the most important n-type semiconductor materials, and a promising candidate for water splitting^{9,10)}, photocatalysis^{11,12)}, DSSCs¹³⁻¹⁵⁾, gas sensors^{16,17)}, and electrochromic devices^{18,19)}. The band gap of WO₃ depends on its crystal structure in the range, 2.6-3.1 eV, which responds to the blue-UV region of the sunlight spectrum^{11,13)}. Therefore, WO₃ has a smaller band gap than anatase TiO₂ (3.2 eV). In addition, WO₃ has a higher carrier mobility than TiO₂. This study investigated the photovoltaic performance of DSSCs fabricated with the addition of WO₃ NPs. Different concentrations of WO₃ NPs were mixed with TiO₂ NPs to form a PE in DSSC.

2. Experiment

2.1 DSSC fabrication

The TiO₂ (P25) NPs were purchased from Sigma-Aldrich and used as received. The TiO₂ paste was prepared as reported elsewhere²⁰⁾. Different amounts of WO₃ NPs powder were dispersed in 5 ml of absolute ethanol under ultrasonication for 15 minutes. Subsequently, 4 ml of a TiO₂ paste was then added and stirred vigorously with a magnetic bar for 3 hours to evaporate the ethanol. The weight ratios of the WO₃ NPs in the TiO₂ NPs paste were 5, 10 and 15 wt.%.

During cell preparation, the FTO glass substrate was cleaned sequentially with deionized water, acetone, and ethanol in an ultrasonic bath. A thin film of TiO_2 mixed with the desired amount of WO₃ NPs was coated uniformly on a FTO glass substrate using the doctor blade method, and dried for 5 minutes at 100°C. The coating procedure was repeated to thicken the mixture layer. The PE was then annealed at 500°C for 1 hour to remove all the organic components. The PE was soaked in a 0.1 M TiCl₄ solution at 70°C for 30 minutes, rinsed with water and ethanol, and sintered at 500°C for 1 hour. The prepared PE was immersed overnight in a ruthenium dye solution containing N719 (Solaronix S. A.) in ethanol at room temperature and finally rinsed with pure ethanol, and dried with a continuous flow of nitrogen. The counter electrode was fabricated by the dip-coating of a FTO glass substrate into a chloroplatinic acid H_2PtCl_6 (37.5% Pt basis) solution followed by annealing at 400°C for 30 minutes in air. The cell was assembled by attaching the dye absorbed PE to the counter electrode using a 100 μ m hot-melt polypropylene spacer. The liquid electrolyte (Dyesol-TIMO) was injected into the internal space between the sandwiched cell through a hole in the back of the counter electrode, which was sealed using a piece of hot melting film and a cover glass. The other samples were also fabricated using a similar method to compare their efficiency.

2.2 Characterization

The crystal structures of samples were analyzed by X-ray diffraction (XRD, Bruker D8 Discover) using Cu-Ka (λ = 0.15405 nm) radiation in the 2θ range of 10 to 70°. The morphology and composition of these samples were investigated by field-emission scanning electron microscopy (FESEM, Hitachi-S4700). Elemental analysis was determined by energy dispersive X-ray spectroscopy (EDX; Horiba, 6853-H). The current densityvoltage curves of the devices were recorded under simulated solar light AM 1.5 G illumination at a light intensity of 100 mW cm⁻² (Abet Technologies). The active areas of the solar cells were 0.16 cm^2 . The electrochemical impedance spectra (EIS) were measured by applying the open circuit voltage under $100 \,\mathrm{mW \, cm}^{-2}$ illumination, and the data was recorded over the frequency range, 0.1-100 kHz, using an ac potential pulse with an amplitude of 10 mV. An equivalent circuit model was fitted to the impedance spectra obtained using Z-view software.

3. Results and discussion

3.1 Crystal structures and morphologies

XRD was performed to determine the purity and crystallinity. Fig. 1(a) presents the XRD pattern of the TiO₂ NPs taken in the 2θ scan range, $10-70^{\circ}$. The XRD pattern showed that the TiO₂ NPs have a crystalline structure containing a mixture of anatase (marked as A) and rutile (marked as R) phases. The XRD peaks at 25.3°, 37.8°, 47.9°, 53.8°, 55.0°, 62.4°, and 68.8° were responded to the (101), (004), (200), (105), (211), (204), and (116) planes of anatase TiO₂ phase (JCPDS no. 21-1272), respectively. The peaks at 27.5°, 36.1°, 41.0°, and 56.6° were assigned to the (110), (101), (111) and (220) planes of the rutile phase (JCPDS no. 21-1276), respectively. No additional peak of other phases were detected. Fig. 1(b) shows the XRD pattern of

Fig. 1. The XRD patterns of TiO₂ (a) and WO₃ (b)

Fig. 2. FE-SEM images of WO₃ nanoparticles (a), low (scale bar 10 μm) and high (scale bar 1 μm) magnification FE-SEM images of the photoelectrode composed of TiO₂ (b) and TiO₂/WO₃ (c). EDX analysis of the TiO₂+ 10%WO₃ PE surface (d)

the WO₃ powder. The results confirmed the formation of pure monoclinic WO₃ crystalline phase (JCPDS no. 43-1035) without any impurity peaks²¹⁾. The XRD peaks are sharp and strong indicating a high crystallinity of samples.

Fig. 2(a) shows FE-SEM images of the WO₃ NPs. The WO₃ particles were separated with a mean particle size ranging from 50 to 200 nm. Fig. 2(b) and (c) present cross-sectional FE-SEM images of the photoelectrode coating on a FTO glass substrate. The thin film of the PEs was uniform and contained compact TiO₂ P25 particles, approximately 14 μ m in thickness, whereas the thickness of the TiO₂ + 10% WO₃ particles mixture layer was approximately 13.8 μ m. The different concentrations of

WO₃ particles PE were prepared using a similar method. The morphology of the TiO₂ mixed with 5% and 15% WO₃ NPs PEs were similar to the mixture TiO₂ + 10% WO₃ particles PE (data not shown). Because small amount of WO₃ particles in the TiO₂ colloid, WO₃ nanoparticles in the mixture PE could not be observed. The EDX analysis of the TiO₂+10%WO₃ PE was performed to present of WO₃ NPs within TiO₂. Fig. 2(d) shows the spectra revealed the present of Ti, O, and W elements on the surface of the TiO₂+10%WO₃ PE. Besides, the Ca, Na, Sn elements are from FTO glass. Therefore, WO₃ particles were confirmed to be present in TiO₂ NPs.

b)

d)

3.2 Photoelectrochemical characterization

Fig. 3 presents the current density- voltage characteristics of the different PEs of DSSCs under simulated 1.5 AM solar illumination. Table 1 lists the measured corresponding parameters with the photocurrent density (J_{SC}), open-circuit voltage (V_{OC}), fill factor (FF), and power conversion efficiency (PCE) of the solar cells. The current density, J_{SC} , of the devices with WO₃ were higher than that of the TiO₂ only devices (Table 1). The maximum current density was 13.36 mA/cm² for the DSSC with TiO₂+10%WO₃ PE. The current density increased with increasing WO₃ concentration until the weight ratio was10%, beyond which, J_{SC} decreased. The enhanced J_{SC} originated mainly from the absorption of the blue-UV region of the sunlight spectrum owing to the low band gap of WO₃, which results in more incident solar light being harvested and an enhanced J_{SC} .

The open circuit voltage generated under illumination corresponds to the difference between the Fermi level of the electron in the semiconductor and the redox potential of the electrolyte. The open circuit voltage, V_{OC} , of the DSSC with TiO₂ particles PE was the highest compared to the other DSSCs examined and V_{OC} decreased with increasing concentration of WO₃ NPs in TiO₂. The decreasing V_{OC} was attributed to the conduction band gap edge position of WO₃ being more positive than TiO₂; it was reported to be in the region of 0 V relative to NHE¹⁴⁾. Although

Fig. 3. J-V curves of DSSCs composed with different PEs

 Table 1. Performance parameters of DSSCs with different PE types

PE type	J _{SC} (mA/cm²)	V _{oc} (V)	FF (%)	PCE (%)
TiO ₂	12.23	0.74	68.70	6.22
TiO ₂ + 5% WO ₃	12.92	0.72	63.33	5.89
TiO ₂ +10% WO ₃	13.36	0.70	57.44	5.38
TiO ₂ + 15% WO ₃	12.60	0.67	57.44	4.89

the DSSCs with the WO₃ NPs have a higher current density but a lower V_{OC} and FF than the cell without WO₃, the device containing only TiO₂ displayed the highest photovoltaic parameters: J_{SC} = 12.23 mA/cm², V_{OC}= 0.74 V, FF= 68.70% and PCE= 6.22%. The results were negative because the conduction band (CB) of WO₃ is lower than that of TiO₂ but the valence band (VB) of WO₃ is higher than that of TiO₂^{22,23)}. Therefore, the band structures in the WO₃/TiO₂ couple do not favor the separation of charge carriers²⁴⁾. On the other hand, some W sites can act as charge recombination centers according to the following scheme²²⁾:

$$W^{6+} + e_{(TiO2) CB-} \rightarrow W^{5+}$$
$$W^{5+} + e_{(TiO2) VB+} \rightarrow W^{6+}$$

Consequently, WO_3 or TiO_2 itself can be a remarkable recombination center for holes and electrons.

Electrochemical impedance spectroscopy (EIS) was performed for a better understanding of the charge transfer inside the DSSCs. Fig. 4 shows the EIS Nyquist plots of the different PEs of DSSCs and the EIS data was fitted to the corresponding equivalent circuit model using Z-view software. In all EIS spectra, there were two well-defined semicircles. The first semicircle at the high frequency region is related to the impedance of the charge transfer process occurring at the interface of the electrolyte and the counter electrode, whereas the other semicircle at the lower frequency region provides information on the impedance at the TiO₂-WO₃/dye/electrolyte

Fig. 4. The EIS Nyquist plots of DSSCs comprised of different PEs and the equivalent circuit model of these DSSCs

Fig. 5. UV-vis absorption spectra of N719 dye loading in different PEs

interface related to recombination, which is important for determining the efficiency of these DSSCs. The interfacial resistance of the TiO₂/dye/electrolyte was 15.88 Ω for the nanoporous TiO₂ cell. The interfacial resistance of the TiO₂-WO₃/dye/electrolyte was 16.01 Ω , 18.53 Ω , and 18.61 Ω for TiO₂ + 5% WO₃, TiO₂ + 10% WO₃, and TiO₂ + 15% WO₃ PEs in the solar cells, respectively. An increase in the interfacial resistance of the TiO₂-WO₃/dye/electrolyte means an increase in the recombination rate, suggesting a low electron transfer in the cells. As a result, the efficiency of the DSSC with WO₃ particles is reduced.

Generally, a higher level of N719 dye absorption in PEs provides more effective photocurrent generation, which will result in an increase in efficiency. To determine the influence of different concentrations of WO₃ on the performance of the absorbed dye, the loaded dye from the different PEs were estimated by UV-vis absorption spectroscopy.

Fig. 5 represents N719 dye desorption in a 0.1M NaOH solution from the base TiO₂ photoelectrode films and mixed TiO₂ and WO₃ photoelectrode films. The results show that the dye loaded on the bare TiO₂ film was the highest compared to the other PEs and the sensitized dye absorption decreased with increasing amount of WO₃ NPs in the PEs due to the lower surface area of WO₃ compared toTiO₂. Although there was a smaller amount of dye absorbed on the photoanodes containing WO₃ NPs, the photocurrent was enhanced by adding WO₃ to the PEs. This might be because the low band gap of WO₃ responds to the blue-UV region of the solar spectrum. Therefore, the improvement in the photocurrent of DSSC can be attributed to the WO₃ NPs enhancing incident light harvesting.

4. Conclusions

Tungsten oxide nanoparticles were introduced as a photoelectrode in DSSCs. A composite PE with TiO_2 and WO_3 exhibited a higher current density in the cell compared to that using TiO_2 P25 only. On the other hand, the efficiency of the DSSCs with the WO_3 nanoparticles was lower than those without WO_3 . These negative results can be explained by the higher recombination rate of holes and electrons and the smaller amount of dye absorbed on the PEs containing WO_3 NPs.

Acknowledgments

This work was supported by a 2-Year Research Grant of Pusan National University.

References

- O'Regan, B., Gratzel, M., "A low-cost high-efficiency solar cell based on dye sensitized colloidal TiO₂ films," Nature, Vol. 353, pp. 737-740, 1991.
- Sakai, N., Miyasaka, T., Murakami,T. N., "Efficiency enhancement of ZnO-based Dye-sensitized solar cells by low-temperature TiCl₄ treatment and dye optimization," J. Phys. Chem. C, Vol. 117, No. 21, pp. 10949-10956, 2013.
- Lee, J. H., Park, N. G., Shin, Y. J., "Nano-grain SnO₂ electrodes for high conversion efficiency SnO₂-DSSC," Solar Energy Materials& Solar cells, Vol. 95, pp. 179-183, 2011.
- Kay, A., Gratzel, M., "dye-sensitized core-shell nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide," Chem. Mater., Vol. 14, No. 7, pp. 2930-2935, 2002.
- Le Viet, A., Jose, R., Reddy, M.V., Chowdari, B. V. R., Ramakrisna, S., "Nb₂O₅ Photoelectrodes for Dye-Sensitized Solar Cells: Choice of the Polymorph," J. Phys. Chem. C, Vol. 114, No. 49, pp. 21795-21800, 2010.
- Paulsson, H., Kloo, L., Hagfeldt, A., Boschloo, G., "Electron transport and recombination in dye-sensitized solar cells with ionic liquid electrolytes," Journal of Electroanalytical Chemistry, Vol. 586, pp. 56-61, 2006.
- Klein, C., Nazeeruddin, M. K., Liska, P., Censo, D. D., Hirata, N., Palomares, E., Durrant, J. E., Gratzel, M., "Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity," Inorg. Chem., Vol 44, pp 178-180, 2005.
- Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baer, R., Mueller, E., Liska, P., Vlachopoulos, N., Gratzel, M., "Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-,

CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," J. Am. Chem. Soc., Vol. 115, pp. 6382-6390, 1993.

- Liu, X., Wang, F., Wang, Q., Nanostructure-based WO₃ photoanodes for photoelectrochemical watersplitting, Phys. Chem. Chem. Phys., Vol. 14, pp. 7894-7911, 2012.
- Cristino, V., Caramori, S., Argazzi, R., Meda, L., Marra, G. L., Bignozzi, C. A., "Efficient Photoelectrochemical Water Splitting by Anodically Grown WO₃ Electrodes," Langmuir, Vol. 27, No. 11, pp. 7276-7284, 2011.
- Wang, F., Valentin, C. D., Pacchioni, G., "Rational band gap engineering of WO₃ photocalalyst for visible water splitting," Chemcatchem, Vol. 4, pp. 476-478, 2012.
- Szilagyi, I. M., Fórizs, B., Rosseler, O., Szegedi, A., Nemeth, P., Kiraly, P., Tarkanyi, G, Vajna, B., Varga-Josepovits, K., Laszlo, K., Toth, A. L., Baranyai, P., Leskela, M., "WO₃ photocatalysts: Influence of structure and composition," Journal of Catalysis, Vol. 294, pp. 119-127, 2012.
- Yong, S. M., Nikolay, T., Ahn, B. T., Kim, D. K., "One-dimensional WO₃ nanorods as photoelectrode for dye-sensitized solar cell," J. Alloys Compd., Vol. 547, pp. 113-117, 2013.
- Zheng, H., Tachibana, Y., Kalantar-zadeh, K., Dye-sensitized solar cells based on WO₃," Langmuir, Vol. 26, No. 24, pp. 19148-19152, 2010.
- Shaikh, S. F., Kalanur, S. S., Mane, R. S., Joo, O. S., "Monoclinic WO₃ nanorods-rutile TiO₂ nanoparticles coreshell interface for efficient DSSCs," Dalton Trans., Vol. 42, pp. 10085-10088, 2013.
- Siciliano, T., Tepore, A., Micocci, G., Serra, A., Manno, D., Filippo, E., "WO₃ gas sensors prepared by thermal oxidization of tungsten," Sensors and Actuators B: Chemical, Vol. 133, pp. 321-326, 2008.
- 17. Zeng, J., Hu, M., Wang, W., Chen, H., Qin, Y., "NO2-sensing

properties of porous WO_3 gas sensor based on anodized sputtered tungsten thin film," Sensors and Actuators B: Chemical, Vol. 161, pp. 447-452, 2012.

- Papaefthimiou, S., Leftheriotis, G., Yianolis, Y., "Advanced electrochromic devices based on WO₃ thin films," Electrochimia Acta, Vol. 46, pp. 2145-2150, 2001.
- Liang, L., Zhang, J., Zhou, Y., Xie, J., Zhang, X., Guan, M., Pan, B., Xie, Y., "High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO₃·2H₂O ultrathin nanosheets," Scientific reports, Vol. 3, Acticle number 1936, pp. 1-8, 2013.
- Vu, T. H. H., Atabaev, T. S., Ahn, J. Y., Nguyen, N. D., Kim, H. K., Hwang, Y. H., "Dye-sensitized solar cells composed of photoactive composite photoelectrodes with enhanced solar energy conversion efficiency," J. Mater. Chem. A, Vol. 3, pp. 11130-11136, 2015.
- Yang, B., Zhang, Y., Drabarek, E., Barnes, P. R. F., and Luca, V., "Enhanced photoelectrochemical activity of sol-gel tungsten trioxide films through textural control," Chemistry of Materials, Vol. 19, No. 23, pp. 5664–5672, 2007.
- Zhang, H., Chen, G., Bahnemann, D. W., "Photoelectrocatalytic materials for environmental application," J. Mater. Chem., Vol. 19, pp. 5089-5121, 2009
- 23. Shaban, A. Y., Khan, S. U. M., "Photoresponse of Visible Light Active CM-n-TiO₂, HM-n-TiO₂, CM-n-Fe₂O₃, and CM-p-WO₃ towards Water Splitting Reaction," Hindawi publishing corporation, Internatinal Journal of Photoenergy, Vol. 2012, article ID 749135, pp. 1-20, 2012.
- Higashimoto, S., Sakiyama, M., Azuma, M., "Photoelectrochemical properties of hybrid WO₃/TiO₂ electrode. Effect of structure of WO₃ on charge separation behavior," Thin Solid Film, Vol. 503, pp. 201-206, 2006.