DOI QR코드

DOI QR Code

선형위험률분포의 절편모수에 근거한 무한고장 NHPP 소프트웨어 신뢰모형에 관한 연구

The Study of Infinite NHPP Software Reliability Model from the Intercept Parameter using Linear Hazard Rate Distribution

  • Kim, Hee-Cheul (Division of Industrial & Management Engineering, Namseoul University) ;
  • Shin, Hyun-Cheul (Division of Computer Engineering, BaekSeok Culture University)
  • 투고 : 2016.06.04
  • 심사 : 2016.06.24
  • 발행 : 2016.06.30

초록

소프트웨어 개발과정에서 소프트웨어 신뢰성은 매우 중요한 이슈이다. 소프트웨어 고장분석을 위한 무한고장 비동질적인 포아송과정에서 고장발생률이 상수이거나, 단조 증가 또는 단조 감소하는 패턴을 가질 수 있다. 본 논문에서는 수리시점에서도 고장이 발생할 상황을 반영하는 무한고장 NHPP모형들을 비교 제시하였다. 소프트웨어 경제, 경영, 보험수리분야에서 많이 사용되는 선형 위험률분포의 절편모수에 근거한 무한고장 소프트웨어 신뢰성모형에 대한 비교문제를 제시하였다. 그 결과 절편모수가 비교적 큰 경우가 효율적으로 나타났다. 그리고 모수 추정법은 최우추정법을 이용하였고 모형선택은 평균제곱오차와 결정계수를 이용하였다. 본 연구에서 제안된 방법은 선형 위험률분포의 절편모수를 고려한 모형도 신뢰성 측면에서 효율적이기 때문에 (결정계수가 90% 이상) 이 분야에서 기존 모형의 하나의 대안으로 사용할 수 있음을 확인 할 수 있었다. 이 연구를 통하여 소프트웨어 개발자들은 다양한 수명분포의 절편모수를 고려함으로서 소프트웨어 고장형태에 대한 사전지식을 파악하는데 도움을 줄 수 있으리라 사료 된다.

Software reliability in the software development process is an important issue. In infinite failure NHPP software reliability models, the fault occurrence rates may have constant, monotonic increasing or monotonic decreasing pattern. In this paper, infinite failures NHPP models that the situation was reflected for the fault occurs in the repair time, were presented about comparing property. Commonly, the software model of the infinite failures using the linear hazard rate distribution software reliability based on intercept parameter was used in business economics and actuarial modeling, was presented for comparison problem. The result is that a relatively large intercept parameter was appeared effectively form. The parameters estimation using maximum likelihood estimation was conducted and model selection was performed using the mean square error and the coefficient of determination. The linear hazard rate distribution model is also efficient in terms of reliability because it (the coefficient of determination is 90% or more) in the field of the conventional model can be used as an alternative model could be confirmed. From this paper, the software developers have to consider intercept parameter of life distribution by prior knowledge of the software to identify failure modes which can be able to help.

키워드

참고문헌

  1. Gokhale, S. S. and Trivedi, K. S. A, "time/structure based software reliability model", Annals of Software Engineering. 8, pp. 85-121. 1999. https://doi.org/10.1023/A:1018923329647
  2. Goel A L, Okumoto K, "Time-dependent fault detection rate model for software and other performance measures", IEEE Trans. Reliab. 28, pp. 206-11, 1978.
  3. Yamada S, Ohba H. S-shaped software reliability modeling for software error detection. IEEE Transaction on Reliability 3, pp. 475-84, 1983.
  4. Zhao M. Change-point problems in software and hardware reliability. Communication Stat Theory Methods 22(3), pp. 757-68, 1993. https://doi.org/10.1080/03610929308831053
  5. Shyur H-J. A stochastic software reliability model with imperfect debugging and change-point. J Syst Software 66(2), pp. 135-41, 2003. https://doi.org/10.1016/S0164-1212(02)00071-7
  6. Pham H, Zhang X., "NHPP software reliability and cost models with testing coverage", Eur. J. Oper. Res, 145, pp.445-454, 2003.
  7. Huang C-Y. Performance analysis of software reliability growth models with testing-effort and change-point. J Syst Software. 2005; 76:181-94. https://doi.org/10.1016/j.jss.2004.04.024
  8. Kuei-Chen, C., Yeu-Shiang, H., and Tzai-Zang, L., "A study of software reliability growth from the perspective of learning effects", Reliability Engineering and System Safety 93, pp. 1410-1421, 2008. https://doi.org/10.1016/j.ress.2007.11.004
  9. Hee-Cheul KIM, "The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Rayleigh and Burr Type", Journal of korea society of digital industry and information management, Volume 10, No.2, pp. 1-11,2014. https://doi.org/10.17662/ksdim.2014.10.1.001
  10. J. F. Lawless. Statistical Models and Methods for Life time Data. John Wiley & Sons, New York, 1981.
  11. Y. HAYAKAWA and G. TELFAR, "Mixed PoissonType Processes with Application in Software Reliability", Mathematical and Computer Modelling, 31, pp.151-156, 2000. https://doi.org/10.1016/S0895-7177(00)00082-0
  12. K. Kanoun and J. C. Laprie, "Handbook of Software Reliability Engineering", M.R.Lyu, Editor, chapter Trend Analysis. McGraw-Hill New York, NY, pp. 401-437, 1996.