
 

www.kips.or.kr                                                                                                Copyright© 2016 KIPS 

       
 
         

 
 
 

Practical (Second) Preimage Attacks on the TCS_SHA-3 
Family of Cryptographic Hash Functions  

 
Gautham Sekar* and Soumyadeep Bhattacharya** 

 
 
Abstract 
TCS_SHA-3 is a family of four cryptographic hash functions that are covered by a United States patent (US 
2009/0262925). The digest sizes are 224, 256, 384 and 512 bits. The hash functions use bijective functions in 
place of the standard compression functions. In this paper we describe first and second preimage attacks on 
the full hash functions. The second preimage attack requires negligible time and the first preimage attack 
requires O(236) time. In addition to these attacks, we also present a negligible time second preimage attack on 
a strengthened variant of the TCS_SHA-3. All the attacks have negligible memory requirements. To the best 
of our knowledge, there is no prior cryptanalysis of any member of the TCS_SHA-3 family in the literature. 
 
Keywords 
Cryptanalysis, Hash Function, (Second) Preimage Attack 
 

 
1. Introduction 

A hash function H takes an arbitrary length bit string M as input and outputs a fixed length bit string 
h (called hash value or digest). A cryptographic hash function is meant to satisfy certain security proper-
ties, the most important of which are listed below. 

－ First preimage resistance: given h, it is computationally infeasible to find an M such that H(M) = h.  
－ Second preimage resistance: given an M and H(M), it is computationally infeasible to find an  

M' ≠ M such that H(M) = H(M').  
－ Collision resistance: it is computationally infeasible to find an M and an M', with M' ≠ M, such 

that H(M) = H(M'). 
The general model for cryptographic hash functions involves what is called a compression function. 

The function transforms a fixed-length bit string into a shorter, fixed-length bit string. The input mes-
sage of a hash function, which is of arbitrary length, is partitioned into blocks of a fixed length (called 
the block length). However, before this can be done, it is required that the length of the message is a mul-
tiple of the block length. Given this and some security considerations, the message is ‘padded’ with bits in 
one of several ways (some padding schemes can be found in [1]). The message blocks are sequentially 
processed, with the compression function acting on the message blocks until all the blocks are pro-

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received October 21, 2013; accepted January 17, 2014; onlinefirst December 31, 2014. 
Corresponding Author: Gautham Sekar (sgautham@isichennai.res.in) 
* Indian Statistical Institute, Chennai Centre, SETS Campus, MGR Knowledge City, CIT Campus, Taramani, Chennai 600113, India  

(sgautham@isichennai.res.in) 
** Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India (sbhtta@imsc.res.in) 

J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 ISSN 1976-913X (Print) 
http://dx.doi.org/10.3745/JIPS.03.0021 ISSN 2092-805X (Electronic) 



Gautham Sekar and Soumyadeep Bhattacharya 
 

 

J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 | 311 

cessed. The end result is output as the digest. The general model for describing hash functions can be 
found in greater detail in [1]. 

A cryptographic hash function family is proposed by Vijayarangan of the Tata Consultancy Services 
(hereinafter called ‘TCS’) in [2]. The family is comprised of four hash functions, as four digest sizes 
(224, 256, 384, and 512 bits) are allowed. In [2], the hash functions are all actually called SHA-3, except 
in one or a few instances (see e.g., Clause 0095 of [2], where a member hash function is called 
TCS_SHA-3). However, as the name SHA-3 (with ‘SHA’ standing for ‘Secure Hash Algorithm’) has 
been in use by the National Institute of Standards and Technology (NIST), USA [3], we use the less 
common ‘TCS_SHA-3’ to denote the SHA-3 of [2]. Further, we denote by TCS_SHA-3-d the member 
that produces d-bit digests. 

The design of TCS_SHA-3 deviates from the general model in that the compression function is re-
placed by a bijective function. This function uses a linear feedback shift register (LFSR) and a T-
function. The design goals, as stated in [2], are to ‘prevent hash collisions’ and to ‘provide a secure hash 
function.’ This paper establishes that the design goals have not been met. 

Motivation behind this work: The TCS, headquartered in India, is one of the largest IT services pro-
viders in the world, with annual revenue of more than $10 billion for 2011–2012 [4]. In May 2012, the 
company was named the fourth most valuable IT services brand worldwide, based on image, reputation 
and intellectual property assessments [5]. The company’s annual research report for 2007–2008 men-
tions the following [6]: 

“In the current year, major work has been done on cryptographic algorithms and hash functions, 
which form the basis of all data security today. Past research products [from the E-Security group of the 
TCS Innovation Labs, Hyderabad, India,]… are in active use around the country (India) by various cus-
tomers in the banking and financial services industry. Organizations using our technology, directly or 
indirectly, include the RBI [(Reserve Bank of India)], National Securities Depositories [sic] Limited 
(NSDL), Ministry of Company [sic] Affairs (MCA), and many public sector banks.” 

Since TCS_SHA-3 is a product of the above-mentioned E-Security group of the TCS Innovation Labs 
[6], there appears to be sufficient motivation to evaluate the security of the hash function family. 

Contributions of this paper: This paper makes three contributions. First, we report a second preimage 
attack that requires negligible time and negligible memory for nearly guaranteed success. Second, we 
describe a first preimage attack on the TCS_SHA-3-d that requires O(227 ∙ d) time and negligible 
memory. Third, we present a second preimage attack, which also requires negligible time and negligible 
memory for nearly guaranteed success, on a strengthened variant of the TCS_SHA-3. 

To the best of our knowledge, there is no prior published attack on the (strengthened) TCS_ SHA-3. 

Organization of this paper: Section 2 describes the TCS_SHA-3 family of hash functions. A second 
preimage attack and the first preimage attack are respectively described in Sections 3 and 4. In Section 
5, we present the second preimage attack on the strengthened TCS_SHA-3. We conclude in Section 6. 
Appendix A provides the results of our simulations of the first preimage attack. 

 
 

2. Specifications 

We will first list the notation and conventions, which are used in the rest of this paper, in Table 1. 



Practical (Second) Preimage Attacks on the TCS_SHA-3 Family of Cryptographic Hash Functions  

 

312 | J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 

Table 1. Notation and conventions 

Symbol/notation Meaning ( ) ith 32-bit word (i = 0 denotes the least significant word) of d-bit ω   
| x | length, in bits, of x 
x( i ) ith bit (i = 0 denotes the least significant bit) of x 

x ∥ y concatenation of two 32-bit words, x and y ⊕ exclusive OR (XOR) 
02 , 12 bit 0, bit 1 

 
The TCS_SHA-3-d takes a message M of arbitrary length as input and returns a digest h (also denoted 

TCS_SHA-3-d(M)) of size d bits after the following sequence of processes, which include six ‘rounds.’ 
1) Padding: The input M is partitioned into = | |⁄  blocks (denoted M1, …, Mk), where each is 

d bits in length. Clause 0068 of [2] states that an initialization vector (IV) of length d is added to a 
message if and only if the size of the message is less than d. The designer should have evidently 
mean the following: if and only if | | < , for any ≥ 1, then Mk is added with the IV. Other-
wise, the TCS_SHA-3 can only be applied to single block messages or multiple block messages, in 
which each one satisfies the condition 	|	| |. For the simulations of Appendix A, we made the 
assignments IV = 1 ∥ {0 } , d = 224, 256, 384, 512. The assignments are motivated by a case 
provided in [2] where the IV is chosen to be 1 ∥ {0 }  when the size of the message is less than 
224 bits. In our simulations, as well as in the aforesaid example case, the IV is XORed with the 
corresponding message block. In summary, the padding rule is defined as follows: for any ≥ 1, 

 → ∗ ∶= ⊕ IV			if	| | < 	, 
                       → ∗ ∶= 														if	| | = 	.                                                     (1) 

 
An implicit assumption in the above discussion is that |Mk| is nonzero. Furthermore, when | | = , 

we infer that there is no extra ‘padding block’ that is appended to M. This is because, in such a case, 
there is no message block to which the IV (= 1 ∥ {0 } ) could be ‘added’. 

2) Round 1: The first round has k steps; the steps are as follows: 
(a) Step 1 when k > 1: An arbitrarily chosen -bit (such that ≤ ) constant c is XORed with 

M1. The output, ⊕ , is input to a bijective function F (defined later in this section). 
Thus, a d-bit string, ( ⊕ ), is output.  
Step 1 when k = 1: The arbitrarily chosen constant c is XORed with ∗. The output,    ⊕ ∗, is  input to F. Thus, a d-bit string, ( ⊕ ∗), is output.  

(b) Steps 2 to k (i.e., when k ≥ 2): Step i, 2 ≤ i ≤ k – 1, is given by the following recursion: 
 	 = 	 ( ⊕ ), ≔ ( ⊕ )	;                                                 (2) 

 

 denotes the output of step l, 1 ≤ l ≤ k – 1, of round 1. 
Step k is given by: 



Gautham Sekar and Soumyadeep Bhattacharya 
 

 

J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 | 313 

= ( ⊕ ∗)	,                                                                    (3) 
 

where  denotes the output of step k of round 1. 
 
3) Round 2: Like round 1, round 2 also proceeds iteratively. The number of steps, s, is such that k “is 

not always the same as” s (see [2]). The input to round 2 is , the final output of round 1. The 
steps are as follows: 

(a) Step 1: The -bit constant c is XORed with . The output, ⊕ , is input to the 
bijective function F. Thereby, a d-bit string, ( ⊕ ), is generated as output. 

(b) Steps 2 to s (i.e., when s ≥ 2): Step i, 2 ≤ i ≤ s, is given by the recursion: 
 

               = ( ⊕ )	, ≔ ( ⊕ )	;	                                                 (4)  
 

  denotes the output of step l, 1 ≤ l ≤ s, of round 2. 
 

 

Fig.	1. The working of TCS_SHA-3 ( ≥ 2) works. 

 

4) Rounds 3 to 6: These rounds are similar to round 2. The number of steps in each of these rounds 

is, again, s. The input to round j, 3 ≤ j ≤ 6, is (i.e., the final output round j - 1 when  de-

notes the output of step l, 1 ≤ l ≤ s, of round j - 1). The steps are as follows: 



Practical (Second) Preimage Attacks on the TCS_SHA-3 Family of Cryptographic Hash Functions  

 

314 | J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 

(a) Step 1: Constant c is XORed with z . The output, c ⊕ z , is input to the bijective 
function F. Thereby, a d-bit string, F(c ⊕ z ), is generated as output. 

(b) Steps 2 to s (i.e., when s ≥ 2):1 Step i, 2 ≤ i ≤ s, is given by the recursion: 
 

           = ⊕ 	, = ⊕ 	;                                             (5) 
 	  denotes the output of step l, 1 ≤ l ≤ s, of round j.     
 
The d-bit digest h is simply the final output, . Fig. 1 shows the working of TCS_SHA-3 works. As 

stated earlier, [2] only says that k is not always the same as s. Therefore, s may be greater than k. We 
make this clarification because Fig. 1 may misleadingly suggest that s is always less than k.2 Algorithm 1 
describes the function : {0 , 1 } → {0 , 1 } . 

 
Algorithm 1. The bijective function : {0 , 1 } → {0 , 1 }  
Require: d-bit input   
Ensure: d-bit output  

1.  Partition: → ∥ ∥ ⋯ ∥ ⁄ 		such	that	| | = 32	for	all	1 ≤ ≤ 32⁄ ;		 
2. Shuffle: → , for all 1 ≤ ≤ 32⁄ , such that ( ) = ( ⁄ )	if	2	|	   and	 ( ) 	= 	 ( ( )⁄ )	otherwise; 
3.  Apply T-function: → ≔ 	2	 + 	mod	2 , for	all	1 ≤ ≤ /32;  
4.  Apply LFSR: → , for all 1 ≤ ≤ 32⁄ , such that | | = 32; 3 
5.  Concatenate:	 ≔ ∥ ∥ ⋯ ∥ ⁄ ; 

 
Note: The TCS_SHA-3 may be strengthened by introducing cipher block chaining in Algorithm 1. 

This point is further explained in Section 5. 
 
 

3. Second Preimage Attack on TCS_SHA-3 

Let = ∥ ∥ ∥ ⋯ ∥ ∗ , ≥ 2,  (when = 2, = ∥ ∗;; in general, when = >2, = ∥ ∥ ⋯ ∥ ∗), denote the given message and h its hash value. Let yi denote the input to 
the ith invocation of the function F (see Fig. 2). Let ′ = ′ ∥ ′ ∥ ∥ ⋯ ∥ ∗, with ≠  and ≠ , denote another message, ℎ′ its hash value, and  the corresponding input to the ith invoca-
tion of F. It immediately follows from Fig. 2 that if = , and then the outputs of round 1 are identi-
cal. This, in turn, implies that ℎ = ℎ (see Fig. 1) and we have a second preimage. The condition =  implies that: 

 ( ⊕ )⊕ = ( ⊕ )⊕ 	.                                                 (6) 

                                          
1 Perhaps the only criterion that s must satisfy is s > 1; otherwise, the TCS_SHA-3-d will have only one round.  
2 The (second) preimage attacks that we report in this paper are independent of the value of s, which is due to reasons that 

would be understood from Sections 3 and 4. 
3 We omit the full description of the LFSR as it is elaborate and not relevant to our analysis (to be understood from 

Sections 3 and 4). In [2], the LFSR is described in Clauses 0078-0083. 



Gautham Sekar and Soumyadeep Bhattacharya 
 

 

J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 | 315 

It is straightforward to see that the conditions: 
 

                            = ( ⊕ )⊕ 		 ,                                                               (7)  
 																																																															 = ⊕ ( ⊕ )	,                                                              (8) 
 

satisfy (6) and when ≠ , we have a second preimage.4 Under reasonable assumptions of uni-
formity, the event =  occurs with negligible probability. 

 

Fig.	2.	Round 1 of TCS_SHA-3. 

 
 

4. First Preimage Attack on TCS_SHA-3 

Fig. 3 illustrates Algorithm 1 for the (sample) case when = 256. 
 

Fig.	3.	The bijective function F of TCS_SHA-3-256; S, T and L are 32-bit to 32-bit functions. 

 
From Fig. 3, we see that the TCS_SHA-3-256 (and the TCS_SHA-3 per se) has poor diffusion proper-

ties. A difference in , for any ∈ {1, 2, … , 32⁄ }, affects  alone. A single-bit difference in , for 
any ∈ {1, 2, … , 	 32⁄ }, is ideally expected to affect 16 bits of . 

Let us consider the case when = 1. Then, given an input difference ( ∗)	for some ∈ {0, 1, … ,32⁄ − 1}, the differential characteristic is shown in Fig. 4. Algorithm 2 exploits this differential char-
acteristic to recover M1 from its corresponding digest value. In step 3 of this algorithm, in place of {0 }  and {0 } ( ⁄ ), one can respectively have any 32i-bit and 32(d/32 – i − 1)-bit value. We 
have used of {0 }  and {0 } ( ⁄ ) for ease of understanding how the attack works. 

                                          
4 A similar correcting block attack on the hash function Khichidi-1 [7] has been reported by Mouha [8]. 



Practical (Second) Preimage Attacks on the TCS_SHA-3 Family of Cryptographic Hash Functions  

 

316 | J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 

Algorithm 2 requires that the attacker knows whether | | =  or | | < . However, even without 
this information the attacker can, at the very least, recover all but the most significant bit of  by simp-
ly computing = ∗ ⊕ IV. This is explained as follows: suppose that | | < . Then, by computing = ∗ ⊕ IV the attacker correctly recovers . Now suppose that | | = . This time, the attacker 
is supposed to compute = ∗. Nevertheless, by computing = ∗ ⊕ IV, the attacker is still able 
to correctly recover d – 1 least significant bits of M1 because the IV is simply 1 ∥ {0 } . 
 
 

Fig.	4.	Differential characteristic for TCS_SHA-3-d when = 1; non-zero differences are confined to 
the grey boxes. 

 

Algorithm 2. Recovering  from ℎ when = 1 
Require: Whether | | =  or | | <   
Ensure: d-bit output  

1.  for = 0 → 32⁄ − 1 do 
2.      for = {0 } → {1 } 	do 
3.  ← {0 } ( ⁄ ) ∥ ∥ {0 } ; 
4. Compute ℏ ≔ TCS_SHA-3-d(l); 
5.  if Γ (ℏ) = 	 Γ (ℎ) then 
6.      Γ ( ∗) ← ; 
7.       break; 
8.       else 
9.         ← + 1; 
10.     	 ← + 1; 
11.   Compute ∗ = Γ ⁄ ( ∗) ∥ Γ ⁄ ( ∗) ∥ ⋯ ∥ Γ ( ∗); 
12.   if | | <  then 
13.    Output = ∗ ⊕ IV; 
14.   else 
15.    Output = ∗; 



Gautham Sekar and Soumyadeep Bhattacharya 
 

 

J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 | 317 

As we can see, Algorithm 2 has 32⁄ ⋅ 2 = ⋅ 2  iterations. Since ≤ 512, single block messages 
can be recovered from their respective hash values in (512 ⋅ 2 ) = (2 ) time. Therefore, it may be 
extremely risky to use the TCS_SHA-3 for something like password hashing (a well-known application 
of cryptographic hash functions, see [9]).  

For the case when > 1, if the message blocks , … ,  are available to the attacker, then  
may be recovered. The attack procedure is now given by Algorithm 2 with  replaced by	  and ∗ 
by ∗. Once again, the attacker is able to recover, at the very least, all but the most significant bit of . 

 

 
5. Cipher Block Chaining in Algorithm 1: Impact on Security 

In Algorithm 1, the 32-bit words , , … , 	 ⁄  are processed independently of one another (see 
Fig. 3). This is an inference that we draw from [2], which does not explicitly mention there being any 
dependence between the processing of  and the processing of , 1 ≤ ≤ 32⁄ − 1. Furthermore, 
[2] provides several implementation results, but the corresponding implementation is missing. We were 
therefore unable to verify the correctness of the implementation results of [2]. If the implementation 
results are correct, then the processing of  and the processing of , 1 ≤ ≤ 32⁄ − 1, may not be 
independent (see e.g., [2]). However, even in such a case, the existence of dependence must have been 
clearly mentioned in [2] in any of the clauses preceding Clause 0087.  

When there is dependence in the form of chaining, given the structural similarities between 
TCS_SHA-3 and Khichidi-1 (see [7]), it appears reasonable to expect the chaining mechanisms in the 
two cases to be identical. From [7] then, we see that Fig. 2 changes to Fig. 5 when = 2.5,6 Clearly this 
would also mean that FIGURE 3 of [2] is incorrect. 

 
Note: If one goes by [7], then in Fig. 5, ( ) is not XORed with , , instead Γ ⁄ ( ) is assigned 

the value of ( ) once  is processed. This may be inferred, for example, from the statement, 

‘ ( ) = ( )’ in [7] (which, in fact, happens to be the only statement in the Khichidi-1 algorithms of [7] 
to describe the chaining process in 224-bit Khichidi-1). If, on the other hand, the statement had read 

‘ ( ) = ( )’, then the chaining process would have appeared meaningful. Therefore, we presume that 
the chaining statements in the Khichidi-1 algorithms of [7] are typographically flawed in the manner 
described above.  

 
However, the case of the aforementioned independent processing of the 32-bit blocks complies with 

FIGURE 3 of [2] and thus enhances our belief in the correctness of the above-mentioned inference of 
independent processing of the ′s (1 ≤ ≤ 32⁄ ). Yet we shall now examine the impact of cipher 
block chaining in Algorithm 1.  

                                          
5 The bijective function :	{0 , 1 } → {0 , 1 }  of Fig. 5 is given by Algorithm 3. 
6 See Fig. 5. Clause 0069 of [2] states that | | ≤ . If | | = < , then ← {0 } ∥ . We find no mention in [2] that it 

is the most significant word of c that is XORed with , ; we simply make such an assumption without the loss of 
generality. 



Practical (Second) Preimage Attacks on the TCS_SHA-3 Family of Cryptographic Hash Functions  

 

318 | J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 

Algorithm 3. The bijective function g: {0 , 1 } → {0 , 1 }  
Require: 32-bit input   
Ensure: 32-bit output  

1. Shuffle: →  such that ( ) = ( ⁄ )	if	2	|	  and	 ( ) = ( ( )⁄ )	otherwise; 
2. Apply T-function: → ≔ 2 + mod	2 ;  
3. Apply LFSR: →  such that | | = 32; 

 

 
Fig.	5.	Round 1 of TCS_SHA-3 ( = 2) with 32-bit cipher block chaining; , = ⁄ ( ) and , = ⁄ ( ∗), for all ∈ {1, 2, … , 32⁄ }. 

 
Let = ∥ ∥ ∥ ⋯ ∥ ∗, ≥ 2  (when = 2, = ∥ ∗ ; in general, when = >2, = ∥ ∥ ⋯ ∥ ∗), denote the message and h its hash value. Let = ∥ ∥ ∥ ⋯ ∥∗, with ≠  and ≠ , denote another message and ℎ  its hash value. We now define the 

following for all ∈ {1, 2,… , 32⁄ }: 
 , ∶= ⁄ ( )			when	 < 	,  

 

                          	 , ∶= ⁄ ( ∗)			when	 = 	.                                                       (9) 
 

Suppose that the conditions ≠  and ≠  are such that , = ,  for all ∈ {1, 2, … ,32⁄ − 1} and , = ,  and for all ∈ {2, … , 32⁄ }. Then, from Fig. 5, it follows that ℎ = ℎ when 

the following condition is satisfied: 



Gautham Sekar and Soumyadeep Bhattacharya 
 

 

J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 | 319 

               , ⁄ ⊕ ⊕ , = ′ , ⁄ ⊕ ⊕ ′ ,  .                                    (10) 
 

It is straightforward to see that the conditions: 
 

                   	 , = ′ , ⁄ ⊕ ⊕ ′ , ⁄ ,                                                   (11) 
 																																																 ′ , ⁄ = , ⊕ , ⁄ ⊕ 	,                                                   (12) 

 

satisfy (10) and when ′ , ⁄ ≠ , ⁄ , we have a second preimage. Under reasonable assumptions of 
uniformity, the event ′ , ⁄ = , ⁄  occurs with negligible probability.	

 
 

6. Conclusions and Open Problems 

In this paper, we have presented what we see as being the first practical (second) preimage attacks on 
the TCS_SHA-3 family of patented cryptographic hash functions. The second preimage attack requires 
negligible time and negligible memory for nearly guaranteed success. The attack works when the num-
ber of message blocks is at least two. The first preimage attack requires (2 ) time and negligible 
memory. This attack is most efficient (going by data requirements) on single block messages -- negligi-
ble data is required in such cases. We have also reported a negligible time/memory second preimage 
attack on the TCS_SHA-3 that is strengthened with 32-bit cipher block chaining. This attack also works 
only when the number of message blocks is at least two. 

Our findings establish, amongst other things, that the TCS_SHA-3 may be particularly unsuitable for 
password hashing (unless, for example, it is strengthened with 32-bit cipher block chaining). 

It may be an interesting exercise to find countermeasures to our attacks. 
 
 

References 

[1] B. Preneel, “Analysis and design of cryptographic hash functions,” PhD dissertation, Katholieke Universiteit 
Leuven, Belgium, 1993. 

[2] N. Vijayarangan, “Method for designing a secure hash function and a system thereof,” U.S. Patent 20090262925, 
Oct 22, 2009. 

[3] National Institute of Standards and Technology, “Cryptographic hash algorithm competition,” http://csrc.nist.gov/ 
groups/ST/hash/sha-3/index.html. 

[4] Tata Consultancy Services, “TCS annual report 2011-2012,” http://www.tcs.com/investors/Documents/ 
Annual%20Reports/TCS_Annual_Report_2011-2012.pdf. 

[5] Tata Consultancy Services, “TCS recognized as Big Four IT Services brand,” http://www.tcs.com/ 
news_events/press_releases/Pages/TCS_recognized_Big_Four_IT_Services_brand.aspx. 

[6] Tata Consultancy Services, “TCS annual report 2007-2008,” http://www.tcs.com/investors/Documents/ 
Annual%20Reports/TCS_Annual_Report_2007_2008.PDF. 

[7] N. Vijayarangan, “A new hash algorithm: Khichidi-1,” 2008; http://ehash.iaik.tugraz.at/uploads/ d/d4/Khichidi-
1.pdf. 



Practical (Second) Preimage Attacks on the TCS_SHA-3 Family of Cryptographic Hash Functions  

 

320 | J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 

[8] N. Mouha, “Automated techniques for hash function and block cipher cryptanalysis,” Ph.D. dissertation, 
Katholieke Universiteit Leuven, Belgium, 2012. 

[9] B. Preneel, “The state of cryptographic hash functions,” in Lectures on Data Security. Heidelberg: Springer, 1999, 
pp. 158-182. 

[10] National Institute of Standards and Technology, “Khichidi-1 package,” http://csrc.nist.gov/ groups/ST/hash/sha-
3/Round1/documents/Khichidi-1.zip. 

 
 

Appendix A. Experiments 

We took a few sample outputs of TCS_SHA-3 and attempted to verify their first preimages. Simula-
tions were performed on a NVIDIA GeForce GT 540M graphics processing unit (GPU) having 96 
CUDA cores (2 multiprocessors × 48 CUDA cores / multiprocessor) and a clock rate of 1.34 GHz. The 
CUDA C compiler nvcc 4.2 was used. Below is a list of assignments made for the simulations and their 
justifications (see also footnotes 1–3 and Section 4).  

 
Table 2. First preimage samples  

Digest 
length 
(bits) 

Output of hash function (in hex) Preimage 
Time 
taken 

(second) 

224 
F18DE455 827C1EE6 00000000 00000000 00000000 00000000 

00000000 ‘password’ 28.66 

256 
F18DE455 827C1EE6 00000000 00000000 00000000 00000000 

00000000 00000000 
‘password’ 28.67 

384 F18DE455 827C1EE6 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000

‘password’ 28.74 

512 
F18DE455 827C1EE6 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 
‘password’ 28.80 

224 
2C2B32B7 305056B5 709FF3A9 7A99955B 3D271585 

78E21E7E 2848DD92 
‘The quick brown fox 

Jumps’ 91.28 

256 
2C2B32B7 305056B5 709FF3A9 7A99955B 3D271585 

78E21E7E CC1779EB A3ED2089 
‘The quick brown fox 

jumps over’ 
103.80 

384 
2C2B32B7 305056B5 709FF3A9 7A99955B 3D271585 
78E21E7E CC1779EB 37407107 89D12C8B EA6630B4 

3929A26F 00000000 

‘The quick brown fox 
jumps over the lazy 

dog’ 
141.08 

512 

2C2B32B7 305056B5 709FF3A9 7A99955B 3D271585 
78E21E7E CC1779EB 37407107 89D12C8B EA6630B4 

3929A26F 00000000 
00000000 00000000 00000000 00000000 

‘The quick brown fox 
jumps over the lazy 

dog’ 
141.14 

 
－ See footnote 6. As the value of c has no bearing on the analysis or the experiments, we assign the 

value {0 }  to c.  
－ The IV is 1 ∥ {0 }  (see Section 2).  
－ The value of s is taken to be the value of s in Khichidi-1 (see [7] and khichidi.c in the URL provid-

ed in [10]), and is therefore equal to 2.  
－ The value of  is 1 for all ∈ {1, 2, … , 6}; the number of LFSR shifts in round i of Khichidi-1 is 

also 1 for all ∈ {1, 2, … , 6} (see [7] and khichidi.c in the URL provided in [10]).  



Gautham Sekar and Soumyadeep Bhattacharya 
 

 

J Inf Process Syst, Vol.12, No.2, pp.310~321, June 2016 | 321 

The system time taken to find the first preimage for each output, given the above set of assignments, 
is provided in Table 2. These system times are expected to remain unaltered when a different IV or c is 
used. 

As shown in Sections 2 and 4, it follows that the time/memory complexity of our first preimage attack 
does not change when one or more of the above-listed assignments are altered. 

 
 
 

Gautham Sekar 
 
He received his bachelor’s degree in Electronics and Instrumentation Engineering from the 
Birla Institute of Technology and Science, Pilani, in June 2006. He simultaneously 
graduated with a master’s degree in Physics from the same institute. In November 
2006, he joined the COSIC (Computer Security and Industrial Cryptography) group 
of the Katholieke Universiteit Leuven, Belgium, as a pre-doctoral student and from 
October 2007 to March 2011 he worked there as a doctoral student under the super-
vision of Prof. Dr. Bart Preneel. Upon obtaining his Ph.D., he worked at the National 
University of Singapore as a Research Scientist until March 2012. Since then, he is a 
Visiting Assistant Professor at the Indian Statistical Institute, Chennai Centre. In May 
2007, he received the Dr. Ranjit Singh Chauhan Undergraduate Research Award 
from the Birla Institute of Technology and Science, Pilani. His research interests in-
clude cryptography, cryptanalysis, and information security in general. 

 
 

Soumyadeep Bhattacharya  http://orcid.org/0000-0002-9386-7513 
 
He received his bachelor’s degree in Electrical and Electronics Engineering and mas-
ter’s degree in Physics from the Birla Institute of Technology and Science, Pilani, in 
June 2010. He is currently a Senior Research Fellow in Theoretical Physics at The In-
stitute of Mathematical Sciences, Chennai. His research interests are statistical phys-
ics and parallel computing. 

 
 
 
 
 
 
 


