DOI QR코드

DOI QR Code

The Effects of Na2CO3 on Early Strength of High Volume Slag Cement

대량치환 슬래그 시멘트의 초기강도에 미치는 Na2CO3의 영향

  • Kim, Tae-Wan (Research Institute of Industrial Technology(RIIT), Pusan National University) ;
  • Hahm, Hyung-Gil (Dept. of Civil Engineering, College of Engineering, Pusan National University)
  • 김태완 (부산대학교 생산기술연구소) ;
  • 함형길 (부산대학교 건설융합학부 토목공학전공)
  • Received : 2015.12.08
  • Accepted : 2016.03.11
  • Published : 2016.06.30

Abstract

This report presents the results of an investigation on the early strength development of pastes high volume slag cement (HVSC) activated with different concentration of sodium carbonate ($Na_2CO_3$). The ordinary Portland cement (OPC) was replaced by ground granulated blast furnace slag (GGBFS) from 50% to 90% by mass, the dry powders were blended before the paste mixing. The $Na_2CO_3$ was added at 0, 2, 4, 6, 8 and 10% by total binder (OPC+GGBFS) weight. A constant water-to-binder ratio (w/b)=0.45 was used for all mixtures. The research carried out the compressive strength, ultrasonic pulse velocity (UPV), water absorption and X-ray diffraction (XRD) analysis at early ages(1 and 3 days). The incase of mixtures, V5 (50% OPC + 50% GGBFS), V6 (40% OPC + 60% GGBFS) and V7 (30% OPC + 70% GGBFS) specimens with 6% $Na_2CO_3$, V8 (20% OPC + 80% GGBFS) and V9 (10% OPC + 90% GGBFS) specimens with 10% $Na_2CO_3$ showed the maximum strength development. The results of UPV and water absorption showed a similar tendency to the strength properties. The XRD analysis of specimens indicated that the hydration products formed in samples were CSH and calcite phases.

본 연구는 다양한 농도의 탄산나트륨($Na_2CO_3$)로 활성화된 대량치환슬래그 시멘트(HVSC)의 초기강도 향상에 관한 연구이다. 보통 포틀랜드 시멘트(OPC)에 대해 고로슬래그 미분말(GGBFS)을 질량의 50에서 90% 치환하였고, 페이스트 믹싱전에 건조한 분말재료를 서로 섞어 두었다. $Na_2CO_3$는 전체 결합제(binder, OPC+GGBFS) 중량의 0, 2, 4, 6, 8 그리고 10%를 혼합하였다. 모든 배합의 물-결합재 비(w/b)는 0.45로 일정하게 하였다. 압축강도, 초음파속도(UPV), 흡수율 그리고 XRD를 초기재령(1일과 3일)에서 실시하였다. V5(50% OPC + 50% GGBFS), V6(40% OPC + 60% GGBFS) 그리고 V7(30% OPC + 70% GGBFS) 시험체에서는 6% $Na_2CO_3$에서, V8(20% OPC + 80% GGBFS)과 V9(10% OPC + 90% GGBFS) 시험체에서는 10% $Na_2CO_3$에서 최고강도가 나타났다. UPV와 흡수율은 압축강도 특성과 유사한 경향을 나타내었다. XRD 분석결과 수화반응생성물질은 CSH 그리고 calcite($CaCO_3$)가 나타났다. 이러한 결과를 볼 때 HVSC 페이스트의 초기강도에는 $Na_2CO_3$의 혼합이 $Na_2CO_3$를 혼합하지 않은 경우와 비교하여 더 좋은 결과를 나타내었다.

Keywords

References

  1. Jeong, J.Y., Jang, S.Y., Choi, Y.C., Jung, S.H., and Kim, S.I., "Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars", Journal of the Korea Concrete Institute, Vol.27, 2015, pp.127-136. https://doi.org/10.4334/JKCI.2015.27.2.127
  2. Jeong, J.Y., Jang, S.Y., Choi, Y.C., Jung, S.H., and Kim, S. I., "Effects of Replacement Ratio and Fineness of GGBFS on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Pastes", Journal of the Korea Concrete Institute, Vol.27, 2015, pp.115-127. https://doi.org/10.4334/JKCI.2015.27.2.115
  3. Sajedi Fathollah, "Mechanical activation of cement-slag mortars", Construction and Building Materials, Vol.26, 2012, pp.41-48. https://doi.org/10.1016/j.conbuildmat.2011.05.001
  4. Fernandez-Jimenez, A., Palomo, J.G., and Puertas, F., "Alkali-activated slag mortars mechanical strength behaviour", Cement and Concrete Research, Vol.29, 1999, pp.1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4
  5. Sanjay, K., Bandopadhyay, A., Tajinikanth, V., Alex, T.C., and Rakesh, K., "Improved processing of blended slag cement through mechanical activation", Journal of Material Science, Vol.39, 2004, pp.3449-3452. https://doi.org/10.1023/B:JMSC.0000026948.85440.cc
  6. Rakhimova, N.R., and Rakhimov, R.Z., "Individual and combined effects of Portland cement-based hydrated mortar components on alkali-activated slag cement", Construction and Building Materials, Vol.73, 2014, pp.515-522. https://doi.org/10.1016/j.conbuildmat.2014.09.096
  7. Escalante-Garcia, J.I., Castro-Borges, P., Gorokhovsky, A., and Rodriguez-Varela, F.J., "Portland cement-blast furnace slag mortars activated using waterglass: Effect of temperature and alkali concentration", Construction and Building Materials, Vol.66, 2014, pp.323-328. https://doi.org/10.1016/j.conbuildmat.2014.04.120
  8. Acevedo-Martinez, E., Gomez-Zamorano, L.Y., and Escalante-Garcia, J.I., "Portland cement-blast furnace slag mortars activated using waterglass: - Part 1: Effect of slag replacement and alkali concentraction", Construction and Building Materials, Vol.37, 2012, pp.462-469. https://doi.org/10.1016/j.conbuildmat.2012.07.041
  9. Bilim, C., and Atis, C.D., "Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag", Construction and Building Materials, Vol.28, 2012, pp.708-712. https://doi.org/10.1016/j.conbuildmat.2011.10.018
  10. Li, D., Wu, W., Shen, J., and Wang, U., "The influence of compound admixtures on the properties of high-content slag cement", Cement and Concrete Research, Vol.30, 2000, pp.45-50. https://doi.org/10.1016/S0008-8846(99)00210-0
  11. Shi, C., Krivenko, P.V., and Roy, D., "Alkali-activated cements and concrete", 1st Ed., Taylor & Francis, 2006.
  12. Escalante-Garcia, J.I., Castro-Borges, P., Gorokhovsky, A., Rodriguez-Varela, F.J., "Portland cement-blast furnace slag mortars activated using waterglass: Effect of temperature and alkali concentration", Construction and Building Materials, Vol.66, 2014, pp.323-328. https://doi.org/10.1016/j.conbuildmat.2014.04.120
  13. Sajedi, F., and Razak, H.A., "The effect of chemical activators on early strength of ordinary Portland cement-slag mortars", Construction and Building Materials, Vol.24, 2010, pp.1944-1951. https://doi.org/10.1016/j.conbuildmat.2010.04.006
  14. Atis, C.D., Bilim, C., Celik, O., and Karahan, O., "Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar", Construction and Building Materials, Vol.23, 2009, pp.548-555. https://doi.org/10.1016/j.conbuildmat.2007.10.011
  15. Kim, G.W., Kim, B.J., Yang, K.H., and Song, J.K., "Strength development of blended sodium alkali-activated ground granulated blast-furnace slag (GGBS) mortar", Journal of the Korea Concrete Institute, Vol.24, No.2, 2012, pp.137-145. https://doi.org/10.4334/JKCI.2012.24.2.137
  16. Collins, F., and Sanjayan, J.G., "Early age strength and workability of slag pastes activated by NaOH and $Na_2CO_3$", Cement and Concrete Research, Vol.28, No.5, 1998, pp. 655-664. https://doi.org/10.1016/S0008-8846(98)00025-8
  17. Ahn, J.W., Cho, J.S., Kim, H.S., Han, G.C., Han, K.S., and Kim, H., "Activation porperty of blast furnace slag by alkaline activator", Journal of the Korean Ceramic Society, Vol.40, No.10, 2003, pp.1005-1014. https://doi.org/10.4191/KCERS.2003.40.10.1005
  18. Bouikni, A., Swamy, R.N., and Bali, A., "Durability properties of concrete containing 50% and 65% slag", Construction and Building Materials, Vol.23, 2009, pp.2836-2845. https://doi.org/10.1016/j.conbuildmat.2009.02.040
  19. Bilim, C., and Atis, C.D., "Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag", Construction and Building Materials, 28, 2012, pp.708-712. https://doi.org/10.1016/j.conbuildmat.2011.10.018
  20. Hadj-sadok, A., Kenai, S., Courard, L., and Darimont, A., "Microstructure and durability of mortars modified with medium active blast furnace slag", Construction and Building Materials, Vol.25, 2011, pp.1018-1025. https://doi.org/10.1016/j.conbuildmat.2010.06.077