DOI QR코드

DOI QR Code

Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 (I) Models and Load Distribution Ratios

전단경간비가 3 이하인 철근콘크리트 보의 스트럿-타이 모델 및 하중분배율(I) 모델 및 하중분배율

  • Chae, Hyun-Soo (Technical Support Department, Hangil IT Co., LTD.) ;
  • Yun, Young Mook (Dept. of Civil Engineering, Kyungpook National University)
  • Received : 2015.05.25
  • Accepted : 2016.04.18
  • Published : 2016.06.30

Abstract

The failure behavior of reinforced concrete beams is governed by the mechanical relationships between the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, two simple indeterminate strut-tie models which can reflect all characteristics of the failure behavior of reinforced concrete beams were proposed. The proposed models are effective for the beams with shear span-to-effective depth ratio of less than 3. For each model, a load distribution ratio, defined as the fraction of load transferred by a truss mechanism, is also proposed to help structural designers perform the rational design of the beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratios, the effect of the primary design variables including shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete was reflected through numerous material nonlinear analysis of the proposed indeterminate strut-tie models. In the companion paper, the validity of the proposed models and load distribution ratios was examined by applying them to the evaluation of the failure strength of 335 reinforced concrete beams tested to failure by others.

철근콘크리트 깊은 보의 파괴거동은 전단경간비, 휨철근비, 하중점과 지지점의 조건, 그리고 사용재료의 성질 등의 여러 변수간의 복합적인 역학관계로 인해 매우 복잡하다. 이 논문에서는 철근콘크리트 깊은 보의 파괴거동 특성을 합리적인 방법으로 반영하여 전단경간비가 3 이하인 철근콘크리트 보의 설계를 수행할 수 있는 두 종류의 단순 1차 부정정 스트럿-타이 모델을 제안하였다. 또한 1차 부정정 스트럿-타이 모델을 정정 스트럿-타이 모델로 변환시켜 현행 스트럿-타이 모델 설계기준에 의한 철근콘크리트 깊은 보의 설계를 가능하게 하는 부정정 스트럿-타이 모델의 하중분배율을 제안하였다. 하중분배율 결정 시 철근콘크리트 보의 강도 및 거동에 영향을 미치는 전단경간비, 휨철근비, 콘크리트의 압축강도 등의 영향을 반영하였다. 이 논문의 동반논문에서는 여러 현행 설계기준의 방법들과 이 연구에서 제안한 스트럿-타이 모델 및 하중분배율을 이용하여 파괴실험이 수행된 전단경간비가 3 이하인 다양한 종류의 335개 철근콘크리트 보의 강도를 평가하고, 이 연구에서 제안한 스트럿-타이 모델 및 하중분배율의 타당성을 검증하였다.

Keywords

References

  1. Canadian Standards Association, Design of Concrete Structures for Buildings, A23.3-M04, Rexdale, Ontario, Canada, 2004.
  2. European Committee for Standardization, Eurocode 2: Design of Concrete Structures, Brussels, Belgium, 2004.
  3. American Association of State Highway and Transportation Officials, AASHTO LRFD Bridge Design Specifications, 5th Edition, Washington, D. C., USA, 2010.
  4. Comite Euro-International du Beton, CEB-FIP Model Code 2010, International Federation for Structural Concrete (fib), Lausanne, Switzerland, 2010.
  5. American Concrete Institute, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, Farmington Hills, Michigan, USA, 2014.
  6. Korean Concrete Institute, Design Specifications for Structural Concrete, Seoul, Korea, 2012. (in Korean)
  7. Chae, H. S. and Yun, Y. M., "Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 - (II) Validity Evaluation", Journal of Korean Concrete Institute, in Review, 2016. (in Korean)
  8. ACI Subcommittee 445, Examples for the Design of Structural Concrete with Strut-and-Tie Models; SP-208, American Concrete Institute, Farmington Hills, Michigan, USA, 2002.
  9. Portland Cement Association, AASHTO LRFD Strut-Tie Model Design Examples, Skokie, Illinois, USA, 2004.
  10. Foster, S. J. and Gilbert, R. I., "Experimental Studies on High-Strength Concrete Deep Beams", ACI Structural Journal, Vol.95, No.4, 1998, pp. 382-390.
  11. Kim, B.H., and Yun, Y.M., "An Indeterminate Strut-Tie Model and Load Distribution Ratio for RC Deep Beams -(I) Model & Load Distribution Ratio", Advances in Structural Engineering, Vol.14, No.6, 2011, pp.1031-1041. https://doi.org/10.1260/1369-4332.14.6.1031
  12. Smith, K.M., and Vantsiotis, A.S., "Shear Strength of Deep Beams", ACI Material Journal, Vol.79, No.3, 1982, pp. 201-213.
  13. American Concrete Institute, Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (ACI 318R-99), Farmington Hills, Michigan, USA, 1999.
  14. Hwang, S.J., Lu, W.Y., and Lee, H.J., "Shear Strength Prediction for Deep Beams", ACI Structural Journal, Vol.97, No.3, 2000, pp.367-376.
  15. Oh, J.K., and Shin, S.W., "Shear Strength of Reinforced High-Strength Concrete Deep Beams", ACI Structural Journal, Vol.98, No.2, 2001, pp.164-173.
  16. Matamoros, A.B., and Wong, K.H., "Design of Simply Supported Deep Beams Using Strut-and-Tie Models", ACI Structural Journal, Vol.100, No.6, 2003, pp.704-712.
  17. Kim, S.C., and Park, S.Y., "A Study on Shear Steel Effect on RC Deep Beams", Journal of the Korean Society of Civil Engineers, Vol.25, No.2, 2005, pp.365-373 (in Korean).
  18. He, Z.Q., Liu, Z., and Ma, Z.J., "Investigation of Load-Transfer Mechanisms in Deep Beams and Corbels", ACI Structural Journal, Vol.109, No.4, 2012, pp.467-476.
  19. Yun, Y.M., "Effective Strength of Concrete Strut in Strut-Tie Model (I): Methods for Determining Effective Strength of Concrete Strut", Journal of the Korean Society of Civil Engineers, Vol.25, No.1, 2005, pp.49-59 (in Korean).
  20. Jeon, C.H., and Yun, Y.M., "Validity Evaluation of Effective Strength of Concrete Strut using Strut-Tie Model Analysis of Structural Concrete", Journal of the Korean Society of Civil Engineers, Vol.30, No.5, 2010, pp.443-462 (in Korean).
  21. Pang, X.B., and Hsu, T.T.C., "Behavior of Reinforced Concrete Membrane Elements in Shear", ACI Structural Journal, Vol.92, No.6, 1995, pp.665-679.
  22. Leonhardt, F., "Reducing the Shear Reinforcement in Reinforced Concrete Beams and Slabs", Magazine of Concrete Research, Vol.17, No.53, 1965, pp.187-198. https://doi.org/10.1680/macr.1965.17.53.187
  23. Park, R., and Paulay, T., Reinforced Concrete Structures, John Wiley & Sons, New York, USA, 1975.
  24. Kim, W., Jeong, J.P., and Kim, D.J., "Non-Bernoulli-Compatibility Truss Model for RC Members Subjected to Combined Action of Flexure and Shear (I) - Its Derivation of Theoretical Concept", Journal of the Korean Society of Civil Engineers, Vol.23, No.6, 2003, pp.1247-1256 (in Koeran).
  25. Kim, W, Jeong, J.P., and Park, D.S., "Non-Bernoulli-Compatibility Truss Model for RC Members Subjected to Combined Action of Flexure and Shear (II) - Its Practical Solution", Journal of the Korean Society of Civil Engineers, Vol.23, No.6, 2003, pp.1257-1266 (in Korean).

Cited by

  1. The Effects of Steel-Fiber Reinforcement on High Strength Concrete Replaced with Recycled Coarse Aggregates More Than 60% vol.4, pp.4, 2016, https://doi.org/10.14190/JRCR.2016.4.4.404