DOI QR코드

DOI QR Code

Data Mining for Identification of Molecular Targets in Ovarian Cancer

  • Villegas-Ruiz, Vanessa (Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics) ;
  • Juarez-Mendez, Sergio (Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics)
  • 발행 : 2016.06.01

초록

Ovarian cancer is possibly the sixth most common malignancy worldwide, in Mexico representing the fourth leading cause of gynecological cancer death more than 70% being diagnosed at an advanced stage and the survival being very poor. Ovarian tumors are classified according to histological characteristics, epithelial ovarian cancer as the most common (~80%). We here used high-density microarrays and a systems biology approach to identify tissue-associated deregulated genes. Non-malignant ovarian tumors showed a gene expression profile associated with immune mediated inflammatory responses (28 genes), whereas malignant tumors had a gene expression profile related to cell cycle regulation (1,329 genes) and ovarian cell lines to cell cycling and metabolism (1,664 genes).

키워드

참고문헌

  1. Adelaide J, Mattei MG, Marics I, et al (1988). Chromosomal localization of the hst oncogene and its co-amplification with the int.2 oncogene in a human melanoma. Oncogene, 2, 413-6.
  2. Albergaria A, Paredes J, Sousa B, et al (2009). Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours. Breast Cancer Res, 11, R40. https://doi.org/10.1186/bcr2327
  3. Barbieri CE, Baca SC, Lawrence MS, et al (2012). Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet, 44, 685-9. https://doi.org/10.1038/ng.2279
  4. Berger MF, Hodis E, Heffernan TP, et al (2012). Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 485, 502-6. https://doi.org/10.1038/nature11071
  5. Cannistra SA (2004). Cancer of the ovary. N Engl J Med, 351, 2519-29. https://doi.org/10.1056/NEJMra041842
  6. Chen S, Gou WF, Zhao S, et al (2015). The role of the REG4 gene and its encoding product in ovarian epithelial carcinoma. BMC Cancer, 15, 471. https://doi.org/10.1186/s12885-015-1435-2
  7. Cui J, Chen Y, Chou WC, et al (2011). An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res, 39, 1197-207. https://doi.org/10.1093/nar/gkq960
  8. D'Alessandro G, Zardawi I, Grace J, et al (1987). Immunohistological evaluation of MHC class I and II antigen expression on nevi and melanoma: relation to biology of melanoma. Pathol, 19, 339-46. https://doi.org/10.3109/00313028709103880
  9. Dalgliesh GL, Furge K, Greenman C, et al (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature, 463, 360-3. https://doi.org/10.1038/nature08672
  10. Davidson B, Stavnes HT, Holth A, et al (2011). Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions. J Cell Mol Med, 15, 535-44. https://doi.org/10.1111/j.1582-4934.2010.01019.x
  11. Davidson B, Stavnes HT, Risberg B, et al (2012). Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions. Hum Pathol, 43, 684-94. https://doi.org/10.1016/j.humpath.2011.06.015
  12. Donaldson PT, Ho S, Williams R, et al (2001). HLA class II alleles in Chinese patients with hepatocellular carcinoma. Liver, 21, 143-8. https://doi.org/10.1034/j.1600-0676.2001.021002143.x
  13. Durinck S, Ho C, Wang NJ, et al (2011). Temporal dissection of tumorigenesis in primary cancers. Cancer Discov, 1, 137-43. https://doi.org/10.1158/2159-8290.CD-11-0028
  14. Ellerhorst JA, Hildebrand WH, Cavett JW, et al (2003). Heterozygosity or homozygosity for 2 HLA class II haplotypes predict favorable outcomes for renal cell carcinoma treated with cytokine therapy. J Urol, 169, 2084-8. https://doi.org/10.1097/01.ju.0000065810.80617.f4
  15. Fonseca AL, Kugelberg J, Starker LF, et al (2012). Comprehensive DNA methylation analysis of benign and malignant adrenocortical tumors. Genes Chromosomes Cancer, 51, 949-60. https://doi.org/10.1002/gcc.21978
  16. Globocan (2012). http://globocan.iarc.fr/Pages/fact_sheets_population.aspx.
  17. Grasso CS, Wu YM, Robinson DR, et al (2012). The mutational landscape of lethal castration-resistant prostate cancer. Nature, 487, 239-43. https://doi.org/10.1038/nature11125
  18. Guichard C, Amaddeo G, Imbeaud S, et al (2012). Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet, 44, 694-8. https://doi.org/10.1038/ng.2256
  19. Hanahan D, Weinberg RA (2000). The hallmarks of cancer. Cell, 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  20. Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144, 646-74. https://doi.org/10.1016/j.cell.2011.02.013
  21. Hong CS, Cui J, Ni Z, et al (2011). A computational method for prediction of excretory proteins and application to identification of gastric cancer markers in urine. PLoS One, 6, 16875. https://doi.org/10.1371/journal.pone.0016875
  22. Ikeda S, Sasazuki S, Natsukawa S, et al (2008). Screening of 214 single nucleotide polymorphisms in 44 candidate cancer susceptibility genes: a case-control study on gastric and colorectal cancers in the Japanese population. Am J Gastroenterol, 103, 1476-87. https://doi.org/10.1111/j.1572-0241.2008.01810.x
  23. Imamura Y, Sakamoto S, Endo T, et al (2012). FOXA1 promotes tumor progression in prostate cancer via the insulin-like growth factor binding protein 3 pathway. PLoS One, 7, 42456. https://doi.org/10.1371/journal.pone.0042456
  24. Jemal A, Siegel R, Ward E, et al (2008). Cancer statistics, 2008. CA Cancer J Clin, 58, 71-96. https://doi.org/10.3322/CA.2007.0010
  25. Johanneson B, McDonnell SK, Karyadi DM, et al (2010). Family-based association analysis of 42 hereditary prostate cancer families identifies the Apolipoprotein L3 region on chromosome 22q12 as a risk locus. Hum Mol Genet, 19, 3852-62. https://doi.org/10.1093/hmg/ddq283
  26. Jones S, Wang TL, Kurman RJ, et al (2012). Low-grade serous carcinomas of the ovary contain very few point mutations. J Pathol, 226, 413-20. https://doi.org/10.1002/path.3967
  27. Juarez-Mendez S, Zentella-Dehesa A, Villegas-Ruiz V, et al (2013). Splice variants of zinc finger protein 695 mRNA associated to ovarian cancer. J Ovarian Res, 6, 61. https://doi.org/10.1186/1757-2215-6-61
  28. Kuhn E, Wu RC, Guan B, et al (2012). Identification of molecular pathway aberrations in uterine serous carcinoma by genomewide analyses. J Natl Cancer Inst, 104, 1503-13. https://doi.org/10.1093/jnci/djs345
  29. Liu X, Gao Y, Zhao B, et al (2015). Discovery of microarrayidentified genes associated with ovarian cancer progression. Int J Oncol, 46, 2467-78. https://doi.org/10.3892/ijo.2015.2971
  30. Mayr D, Kanitz V, Anderegg B, et al (2006). Analysis of gene amplification and prognostic markers in ovarian cancer using comparative genomic hybridization for microarrays and immunohistochemical analysis for tissue microarrays. Am J Clin Pathol, 126, 101-9. https://doi.org/10.1309/N6X5MB24BP42KP20
  31. Molenaar JJ, Koster J, Zwijnenburg DA, et al (2012). Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature, 483, 589-93. https://doi.org/10.1038/nature10910
  32. Nagore E, Planelles MD, Ledesma E, et al (2002). Molecular genetic analysis of HLA-DR and -DQ alleles in Spanish patients with melanoma. Acta Derm Venereol, 82, 90-3. https://doi.org/10.1080/00015550252948095
  33. Ogawa JI, Inoue H, Koide S (1997). alpha-2,3-Sialyltransferase type 3N and alpha-1,3-fucosyltransferase type VII are related to sialyl Lewis(x) synthesis and patient survival from lung carcinoma. Cancer, 79, 1678-85. https://doi.org/10.1002/(SICI)1097-0142(19970501)79:9<1678::AID-CNCR7>3.0.CO;2-8
  34. Ohri CM, Shikotra A, Green RH, et al (2009). Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J, 33, 118-26. https://doi.org/10.1183/09031936.00065708
  35. Parsons DW, Jones S, Zhang X, et al (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321, 1807-12. https://doi.org/10.1126/science.1164382
  36. Peifer M, Fernandez-Cuesta L, Sos ML, et al (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet, 44, 1104-10. https://doi.org/10.1038/ng.2396
  37. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, et al (2012). BAP1 loss defines a new class of renal cell carcinoma. Nat Genet, 44, 751-9. https://doi.org/10.1038/ng.2323
  38. Pugh TJ, Weeraratne SD, Archer TC, et al (2012). Medulloblastoma exome sequencing uncovers subtypespecific somatic mutations. Nature, 488, 106-10. https://doi.org/10.1038/nature11329
  39. Quesada V, Conde L, Villamor N, et al (2012). Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet, 44, 47-52. https://doi.org/10.1038/ng.1032
  40. Robinson G, Parker M, Kranenburg TA, et al (2012). Novel mutations target distinct subgroups of medulloblastoma. Nature, 488, 43-8. https://doi.org/10.1038/nature11213
  41. Saint-Ruf C, Gerbault-Seureau M, Viegas-Pequignot E, et al (1990). Proto-oncogene amplification and homogeneously staining regions in human breast carcinomas. Genes Chromosomes Cancer, 2, 18-26. https://doi.org/10.1002/gcc.2870020105
  42. Sakaeda M, Sato H, Ishii J, et al (2013). Neural lineage-specific homeoprotein BRN2 is directly involved in TTF1 expression in small-cell lung cancer. Lab Invest, 93, 408-21. https://doi.org/10.1038/labinvest.2013.2
  43. Schmitt JF, Susil BJ, Hearn MT (1996). Aberrant FGF-2, FGF-3, FGF-4 and C-erb-B2 gene copy number in human ovarian, breast and endometrial tumours. Growth Factors, 13, 19-35. https://doi.org/10.3109/08977199609034564
  44. Shah SP, Roth A, Goya R, et al (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486, 395-9. https://doi.org/10.1038/nature10933
  45. Shimizu S, Kondo M, Miyamoto Y, et al (2002). Foxa (HNF3) up-regulates vitronectin expression during retinoic acidinduced differentiation in mouse neuroblastoma Neuro2a cells. Cell Struct Funct, 27, 181-8. https://doi.org/10.1247/csf.27.181
  46. Song Y, Washington MK, Crawford HC (2010). Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res, 70, 2115-25. https://doi.org/10.1158/0008-5472.CAN-09-2979
  47. Stransky N, Egloff AM, Tward AD, et al (2011). The mutational landscape of head and neck squamous cell carcinoma. Science, 333, 1157-60. https://doi.org/10.1126/science.1208130
  48. Ugurel S, Uhlig D, Pfohler C, et al (2004). Down-regulation of HLA class II and costimulatory CD86/B7-2 on circulating monocytes from melanoma patients. Cancer Immunol Immunother, 53, 551-9. https://doi.org/10.1007/s00262-003-0489-1
  49. Varadi V, Bevier M, Grzybowska E, et al (2012). Genetic variation in ALCAM and other chromosomal instability genes in breast cancer survival. Breast Cancer Res Treat, 131, 311-9. https://doi.org/10.1007/s10549-011-1765-y
  50. Young RP, Hopkins RJ, Hay BA, et al (2009). Lung cancer susceptibility model based on age, family history and genetic variants. PLoS One, 4, e5302. https://doi.org/10.1371/journal.pone.0005302
  51. Zhang J, Ding L, Holmfeldt L, et al (2012). The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 481, 157-63. https://doi.org/10.1038/nature10725