참고문헌
- Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proceeding of the Second International Symposium on Information Theory, Budapest: Akademiai Kiado.
- Andersen, P. and Gill, R. (1982). Cox's regression model for counting processes, a large sample study, Annals of Statistics, 10, 1100-1120. https://doi.org/10.1214/aos/1176345976
- Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society. Series B (Methodological), 57, 289-300.
- Belloni, A. and Chernozhukov, V. (2013). Least squares after model selection in high-dimensional sparse models, Bernoulli, 19, 521-547. https://doi.org/10.3150/11-BEJ410
- Cantero-Recasens, G., Fandos, C., Rubio-Moscardo, F., Valverde, M. A., and Vicente, R. (2010). The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress, Human Molecular Genetics, 19, 111-121. https://doi.org/10.1093/hmg/ddp471
- Danaher, P., Wang, P., and Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes, Journal of the Royal Statistical Society. Series B (Methodological), 76, 373-397. https://doi.org/10.1111/rssb.12033
- Demmel, J. W. (1997). Applied Numerical Linear Algebra, SIAM, Philadelphia.
- Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression, Annals of Statistics, 32, 407-499. https://doi.org/10.1214/009053604000000067
- El-Telbany, A. and Ma, P. C. (2012). Cancer genes in lung cancer: racial disparities: are there any?, Genes & Cancer, 3, 467-480. https://doi.org/10.1177/1947601912465177
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Fan, Y. and Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized likelihood, Journal of the Royal Statistical Society. Series B (Methodological), 75, 531-552. https://doi.org/10.1111/rssb.12001
- Friedman, J., Hastie, T., Ho ing, H., and Tibshirani, R. (2007). Pathwise coordinate optimization, Annals of Applied Statistics, 1, 302-332. https://doi.org/10.1214/07-AOAS131
- Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 9, 432-441. https://doi.org/10.1093/biostatistics/kxm045
- Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., and Speed, T. P. (2003). Summaries of Affymetrix GeneChip probe level data, Nucleic Acids Research, 31, e15. https://doi.org/10.1093/nar/gng015
- Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010). Cancer statistics, CA: A Cancer Journal for Clinicians, 60, 277-300. https://doi.org/10.3322/caac.20073
- Khare, K., Oh, S.-Y., and Rajaratnam, B. (2015). A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees, Journal of the Royal Statistical Society. Series B (Methodological), 77, 803-825. https://doi.org/10.1111/rssb.12088
- Meinshausen, N. and Buhlmann, P. (2006). High-dimensional graphs and variable selection with the lasso, Annals of Statistics, 34, 1436-1462. https://doi.org/10.1214/009053606000000281
- Nishii, R. (1984). Asymptotic properties of criteria for selection of variables in multiple regression, Annals of Statistics, 12, 758-765. https://doi.org/10.1214/aos/1176346522
- Paige, C. C. and Saunders, M. A. (1975). Solution of sparse indefinite systems of linear equations, SIAM Journal on Numerical Analysis, 12, 617-629. https://doi.org/10.1137/0712047
- Peng, J., Wang, P., Zhou, N., and Zhu, J. (2009). Partial correlation estimation by Joint sparse regression models, Journal of the American Statistical Association, 104, 735-746. https://doi.org/10.1198/jasa.2009.0126
- Picard, R. R. and Cook, R. D. (1984). Cross-validation of regression models, Journal of the American Statistical Association, 79, 575-583. https://doi.org/10.1080/01621459.1984.10478083
- Pounds, S. and Morris, S. W. (2003). Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values, Bioinformatics, 19, 1236-1242. https://doi.org/10.1093/bioinformatics/btg148
- Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461-464. https://doi.org/10.1214/aos/1176344136
- Shao, J. (1997). An asymptotic theory for linear model selection, Statistica Sinica, 7, 221-264.
- Sterrenberg, J. N., Blatch, G. L., and Edkins, A. L. (2011). Human DNAJ in cancer and stem cells, Cancer Letters, 312, 129-142. https://doi.org/10.1016/j.canlet.2011.08.019
- Tang, H., Xiao, G., Behrens, C., Schiller, J., Allen, J., Chow, C. W., Suraokar, M., Corvalan, A., Mao, J., White, M. A., Wistuba, I., Minna, J. D., and Xie, Y. (2013). A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients, Clinical Cancer Research, 19, 1577-1586. https://doi.org/10.1158/1078-0432.CCR-12-2321
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), 58, 267-288.
- Tibshirani, R. J. (2013). The lasso problem and uniqueness, Electronic Journal of Statistics, 7, 1456-1490. https://doi.org/10.1214/13-EJS815
- Tomida, S., Takeuchi, T., Shimada, Y., Arima, C., Matsuo, K., Mitsudomi, T., Yatabe, Y., and Takahashi, T. (2009). Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis, Journal of Clinical Oncology, 27, 2793-2799. https://doi.org/10.1200/JCO.2008.19.7053
- Wang, H., Li, B., and Leng, C. (2009). Shrinkage tuning parameter selection with a diverging number of parameters, Journal of the Royal Statistical Society. Series B (Methodological), 71, 671-683. https://doi.org/10.1111/j.1467-9868.2008.00693.x
- Wang, H., Li, R., and Tsai, C. L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method, Biometrika, 94, 553-568. https://doi.org/10.1093/biomet/asm053
- Wang, T. and Zhu, L. (2011). Consistent tuning parameter selection in high dimensional sparse linear regression, Journal of Multivariate Analysis, 102, 1141-1151. https://doi.org/10.1016/j.jmva.2011.03.007
- Yang, Y. (2005). Can the strengths of aic and bic be shared?: a conflict between model identification and regression estimation, Biometrika, 92, 937-950. https://doi.org/10.1093/biomet/92.4.937
- Yoo, J., Lee, S.-H., Lym, K., Park, S. Y., Yang, S.-H., Yoo, C.-Y., Jung, J.-H., Kang, S.-J., and Kang, C.-S. (2012). Immunohistochemical expression of DCUN1D1 in non-small cell lung carcinoma: its relation to brain metastasis, Cancer Research and Treatment: Official Journal of Korean Cancer Association, 44, 57-62. https://doi.org/10.4143/crt.2012.44.1.57
- Yu, D., Son, W., Lim, J., and Xiao, G. (2015). Statistical completion of partially identified graph with application to estimation of gene regulatory network, Biostatistics, 16, 670-685. https://doi.org/10.1093/biostatistics/kxv013
- Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty, Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729
- Zhang, C.-H. and Huang, J. (2008). The sparsity and bias of the lasso selection in high-dimensional linear regression, Annals of Statistics, 36, 1567-1594. https://doi.org/10.1214/07-AOS520
- Zou, H. (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735