DOI QR코드

DOI QR Code

비모수 베이지안 겉보기 무관 회귀모형

A nonparametric Bayesian seemingly unrelated regression model

  • Jo, Seongil (Department of Statistics, Korea University) ;
  • Seok, Inhae (Department of Statistics, Korea University) ;
  • Choi, Taeryon (Department of Statistics, Korea University)
  • 투고 : 2016.02.24
  • 심사 : 2016.04.25
  • 발행 : 2016.06.30

초록

본 논문에서는 겉보기 무관 회귀모형을 고려하고 디리크레 프로세스 혼합모형을 오차항의 분포로 하는 비모수 베이지안 방법을 제안한다. 제안된 모형을 바탕으로 사후분포를 유도하고 디리크레 프로세스 혼합모형의 붕괴깁스표집 방법을 통해 마코프 체인 몬테 칼로 알고리듬을 구성하고 사후추론을 실시한다. 모형의 성능을 비교하기 위해 모의실험을 실시하고, 더 나아가 한국지역의 강수량 예측에 대한 실제 자료에 적용해 본다.

In this paper, we consider a seemingly unrelated regression (SUR) model and propose a nonparametric Bayesian approach to SUR with a Dirichlet process mixture of normals for modeling an unknown error distribution. Posterior distributions are derived based on the proposed model, and the posterior inference is performed via Markov chain Monte Carlo methods based on the collapsed Gibbs sampler of a Dirichlet process mixture model. We present a simulation study to assess the performance of the model. We also apply the model to precipitation data over South Korea.

키워드

참고문헌

  1. Aitken, A. C. (1935). On least-squares and linear combination of observations. In Proceedings of the Royal Society of Edinburgh, 55, 42-48.
  2. Aliprantis, C. D., Barnett, W. A., Cornet, B., and Durlauf, S. (2007). The interface between econometrics and economic theory, Journal of Econometrics, 136, 325-724. https://doi.org/10.1016/j.jeconom.2005.11.011
  3. Ando, T. and Zellner, A. (2010). Hierarchical Bayesian analysis of the seemingly unrelated regression and simultaneous equations models using a combination of direct Monte Carlo and importance sampling techniques, Bayesian Analysis, 5, 65-96. https://doi.org/10.1214/10-BA503
  4. Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, The Annals of Statistics, 2, 1152-1174. https://doi.org/10.1214/aos/1176342871
  5. Baran, S. and Lerch, S. (2015). Log-normal distribution based Ensemble Model Output Statistics models for probabilistic wind-speed forecasting, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2521
  6. Chib, S. and Greenberg, E. (2010). Additive cubic spline regression with Dirichlet process mixture errors, Journal of Econometrics, 156, 322-336. https://doi.org/10.1016/j.jeconom.2009.11.002
  7. Deque, M. (2003). "Continuous Variable" Chapter 5, Forecast Verification: A Practitioner's Guide in Atmospheric Science, Wiley, New York.
  8. Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures, Journal of the American Statistical Association, 90, 577-588. https://doi.org/10.1080/01621459.1995.10476550
  9. Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems, The Annals of Statistics, 1, 209-230. https://doi.org/10.1214/aos/1176342360
  10. Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In M. Rizvi, J. Rustagi and D. Siegmund (Ed), Recent Advances in Statistics (pp. 287-302), Academic Press, New York.
  11. Fraser, D. A. S., Rekkasb, M., and Wong, A. (2005). Highly accurate likelihood analysis for the seemingly unrelated regression problem, Journal of Econometrics, 127, 17-33. https://doi.org/10.1016/j.jeconom.2004.06.001
  12. Geisser, S. and Eddy, W. F. (1979). A predictive approach to model selection, Journal of the American Statistical Association, 74, 153-160. https://doi.org/10.1080/01621459.1979.10481632
  13. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian Data Analysis (3rd ed), Chapman & Hall/CRC, Florida.
  14. Glahn, H. R. and Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting, Journal of Applied Meteorology, 11, 1203-1211. https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
  15. Greene, W. H. (2003). Econometric Analysis (5th ed), Prentice Hall, New Jersey.
  16. Hjort, N. L., Holmes, C., Muller, P., and Walker, S. G. (2010). Bayesian Nonparametrics, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.
  17. Henningsen, A. and Hamann, J. D. (2007). systemfit: A package for estimating systems of simultaneous equations in R, Journal of Statistical Software, 23, 1-40.
  18. Jo, S., Lim, Y., Lee, J., Kang, H., and Oh, H. (2012). Bayesian regression model for seasonal forecast of precipitation over Korea, Asia-Pacific Journal of Atmospheric Sciences, 48, 205-212. https://doi.org/10.1007/s13143-012-0021-7
  19. Kang, J., Suh, M., Hong, K., and Kim, C. (2011). Development of updateable Model Output Statistics (UMOS) System for Air Temperature over South Korea, Asia-Pacific Journal of Atmospheric Sciences, 47, 199-211. https://doi.org/10.1007/s13143-011-0009-8
  20. Koop, G., Poirier, D. J., and Tobias, J. (2005). Semiparametric Bayesian inference in multiple equation models, Journal of Applied Econometrics, 20, 723-747. https://doi.org/10.1002/jae.810
  21. Kowalski, J., Mendoza-Blanco, J. R., Tu, X. M., and Gleser, L. J. (1999). On the difference in inference and prediction between the joint and independent t-error models for seemingly unrelated regressions, Communications in Statistics - Theory and Methods, 28, 2119-2140. https://doi.org/10.1080/03610929908832410
  22. Lang, S., Adebayo, S. B., Fahrmeir, L., and Steiner, W. J. (2003). Bayesian geoadditive seemingly unrelated regression, Computational Statistics, 18, 263-292. https://doi.org/10.1007/s001800300144
  23. Lim, Y., Jo, S., Lee, J., Oh, H., and Kang, H. (2012). An improvement of seasonal climate prediction by regularized canonical correlation analysis, International Journal of Climatology, 32, 1503-1512. https://doi.org/10.1002/joc.2368
  24. Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates, The Annals of Statistics, 12, 351-357.
  25. Muller, P., Quintana, F. A., Jara, A., and Hanson, T. (2015). Bayesian Nonparametric Data Analysis, Springer Series in Statistics.
  26. Muller, P. and Rodriguez, A. (2013). Nonparametric Bayesian Inference, NSF-CBMS Regional Conference Series in Probability and Statistics, Volume 9, Institute of Mathematical Statistics.
  27. Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models, Journal of Computational and Graphical Statistics, 9, 249-265.
  28. Ng, V. M. (2002). Robust Bayesian inference for seemingly unrelated regressions with elliptical errors, Journal of Multivariate Analysis, 83, 409-414. https://doi.org/10.1006/jmva.2001.2054
  29. Park, H. and Hong, S.-Y. (2007). An evaluation of a mass-flux cumulus parameterization scheme in the kma global forecast system, Journal of the Meteorological Society of Japan, 85, 151-169. https://doi.org/10.2151/jmsj.85.151
  30. Potts, J. M., Folland, C. K., Jolliffe, I. T., and Secton, D. (1996). Revised LEPS scores for assessing climate model simulations and long-range forecasts, Journal of Climate, 9, 34-54. https://doi.org/10.1175/1520-0442(1996)009<0034:RSFACM>2.0.CO;2
  31. Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review, 133, 1155-1174. https://doi.org/10.1175/MWR2906.1
  32. Rodriguez, C. E. and Walker, S. G. (2014). Univariate Bayesian nonparametric mixture modeling with unimodal kernels, Statistics and Computing, 24, 35-49. https://doi.org/10.1007/s11222-012-9351-7
  33. Sethurman, J. (1994). A constructive definition of Dirichlet priors, Statistica Sinica, 4, 639-650.
  34. Wang, H. (2010). Sparse seemingly unrelated regression modelling: applications in finance and econometrics, Computational Statistics and Data Analysis, 54, 2866-2877. https://doi.org/10.1016/j.csda.2010.03.028
  35. Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias, Journal of the American Statistical Association, 57, 348-368. https://doi.org/10.1080/01621459.1962.10480664
  36. Zellner, A. (1963). Estimators for seemingly unrelated regression equations: some exact finite sample results, Journal of the American Statistical Association, 58, 977-992. https://doi.org/10.1080/01621459.1963.10480681
  37. Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics, Wiley, New York.
  38. Zellner, A. and Ando, T. (2010a). A direct Monte Carlo approach for Bayesian analysis for the seemingly unrelated regression model, Journal of Econometrics, 159, 33-45. https://doi.org/10.1016/j.jeconom.2010.04.005
  39. Zellner, A. and Ando, T. (2010b). Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting, International Journal of Forecasting, 26, 413-434. https://doi.org/10.1016/j.ijforecast.2009.12.012
  40. Zellner, A. and Chen, B. (2002). Bayesian modeling of economies and data requirements, Macroeconomic Dynamics, 5, 673-700.
  41. Zellner, A. and Tobias, J. (2001). Further results on Bayesian method of moments analysis of the multiple regression model, International Economic Review, 42, 121-139. https://doi.org/10.1111/1468-2354.00103