References
- Aitken, A. C. (1935). On least-squares and linear combination of observations. In Proceedings of the Royal Society of Edinburgh, 55, 42-48.
- Aliprantis, C. D., Barnett, W. A., Cornet, B., and Durlauf, S. (2007). The interface between econometrics and economic theory, Journal of Econometrics, 136, 325-724. https://doi.org/10.1016/j.jeconom.2005.11.011
- Ando, T. and Zellner, A. (2010). Hierarchical Bayesian analysis of the seemingly unrelated regression and simultaneous equations models using a combination of direct Monte Carlo and importance sampling techniques, Bayesian Analysis, 5, 65-96. https://doi.org/10.1214/10-BA503
- Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, The Annals of Statistics, 2, 1152-1174. https://doi.org/10.1214/aos/1176342871
- Baran, S. and Lerch, S. (2015). Log-normal distribution based Ensemble Model Output Statistics models for probabilistic wind-speed forecasting, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2521
- Chib, S. and Greenberg, E. (2010). Additive cubic spline regression with Dirichlet process mixture errors, Journal of Econometrics, 156, 322-336. https://doi.org/10.1016/j.jeconom.2009.11.002
- Deque, M. (2003). "Continuous Variable" Chapter 5, Forecast Verification: A Practitioner's Guide in Atmospheric Science, Wiley, New York.
- Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures, Journal of the American Statistical Association, 90, 577-588. https://doi.org/10.1080/01621459.1995.10476550
- Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems, The Annals of Statistics, 1, 209-230. https://doi.org/10.1214/aos/1176342360
- Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In M. Rizvi, J. Rustagi and D. Siegmund (Ed), Recent Advances in Statistics (pp. 287-302), Academic Press, New York.
- Fraser, D. A. S., Rekkasb, M., and Wong, A. (2005). Highly accurate likelihood analysis for the seemingly unrelated regression problem, Journal of Econometrics, 127, 17-33. https://doi.org/10.1016/j.jeconom.2004.06.001
- Geisser, S. and Eddy, W. F. (1979). A predictive approach to model selection, Journal of the American Statistical Association, 74, 153-160. https://doi.org/10.1080/01621459.1979.10481632
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian Data Analysis (3rd ed), Chapman & Hall/CRC, Florida.
- Glahn, H. R. and Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting, Journal of Applied Meteorology, 11, 1203-1211. https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
- Greene, W. H. (2003). Econometric Analysis (5th ed), Prentice Hall, New Jersey.
- Hjort, N. L., Holmes, C., Muller, P., and Walker, S. G. (2010). Bayesian Nonparametrics, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.
- Henningsen, A. and Hamann, J. D. (2007). systemfit: A package for estimating systems of simultaneous equations in R, Journal of Statistical Software, 23, 1-40.
- Jo, S., Lim, Y., Lee, J., Kang, H., and Oh, H. (2012). Bayesian regression model for seasonal forecast of precipitation over Korea, Asia-Pacific Journal of Atmospheric Sciences, 48, 205-212. https://doi.org/10.1007/s13143-012-0021-7
- Kang, J., Suh, M., Hong, K., and Kim, C. (2011). Development of updateable Model Output Statistics (UMOS) System for Air Temperature over South Korea, Asia-Pacific Journal of Atmospheric Sciences, 47, 199-211. https://doi.org/10.1007/s13143-011-0009-8
- Koop, G., Poirier, D. J., and Tobias, J. (2005). Semiparametric Bayesian inference in multiple equation models, Journal of Applied Econometrics, 20, 723-747. https://doi.org/10.1002/jae.810
- Kowalski, J., Mendoza-Blanco, J. R., Tu, X. M., and Gleser, L. J. (1999). On the difference in inference and prediction between the joint and independent t-error models for seemingly unrelated regressions, Communications in Statistics - Theory and Methods, 28, 2119-2140. https://doi.org/10.1080/03610929908832410
- Lang, S., Adebayo, S. B., Fahrmeir, L., and Steiner, W. J. (2003). Bayesian geoadditive seemingly unrelated regression, Computational Statistics, 18, 263-292. https://doi.org/10.1007/s001800300144
- Lim, Y., Jo, S., Lee, J., Oh, H., and Kang, H. (2012). An improvement of seasonal climate prediction by regularized canonical correlation analysis, International Journal of Climatology, 32, 1503-1512. https://doi.org/10.1002/joc.2368
- Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates, The Annals of Statistics, 12, 351-357.
- Muller, P., Quintana, F. A., Jara, A., and Hanson, T. (2015). Bayesian Nonparametric Data Analysis, Springer Series in Statistics.
- Muller, P. and Rodriguez, A. (2013). Nonparametric Bayesian Inference, NSF-CBMS Regional Conference Series in Probability and Statistics, Volume 9, Institute of Mathematical Statistics.
- Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models, Journal of Computational and Graphical Statistics, 9, 249-265.
- Ng, V. M. (2002). Robust Bayesian inference for seemingly unrelated regressions with elliptical errors, Journal of Multivariate Analysis, 83, 409-414. https://doi.org/10.1006/jmva.2001.2054
- Park, H. and Hong, S.-Y. (2007). An evaluation of a mass-flux cumulus parameterization scheme in the kma global forecast system, Journal of the Meteorological Society of Japan, 85, 151-169. https://doi.org/10.2151/jmsj.85.151
- Potts, J. M., Folland, C. K., Jolliffe, I. T., and Secton, D. (1996). Revised LEPS scores for assessing climate model simulations and long-range forecasts, Journal of Climate, 9, 34-54. https://doi.org/10.1175/1520-0442(1996)009<0034:RSFACM>2.0.CO;2
- Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review, 133, 1155-1174. https://doi.org/10.1175/MWR2906.1
- Rodriguez, C. E. and Walker, S. G. (2014). Univariate Bayesian nonparametric mixture modeling with unimodal kernels, Statistics and Computing, 24, 35-49. https://doi.org/10.1007/s11222-012-9351-7
- Sethurman, J. (1994). A constructive definition of Dirichlet priors, Statistica Sinica, 4, 639-650.
- Wang, H. (2010). Sparse seemingly unrelated regression modelling: applications in finance and econometrics, Computational Statistics and Data Analysis, 54, 2866-2877. https://doi.org/10.1016/j.csda.2010.03.028
- Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias, Journal of the American Statistical Association, 57, 348-368. https://doi.org/10.1080/01621459.1962.10480664
- Zellner, A. (1963). Estimators for seemingly unrelated regression equations: some exact finite sample results, Journal of the American Statistical Association, 58, 977-992. https://doi.org/10.1080/01621459.1963.10480681
- Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics, Wiley, New York.
- Zellner, A. and Ando, T. (2010a). A direct Monte Carlo approach for Bayesian analysis for the seemingly unrelated regression model, Journal of Econometrics, 159, 33-45. https://doi.org/10.1016/j.jeconom.2010.04.005
- Zellner, A. and Ando, T. (2010b). Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting, International Journal of Forecasting, 26, 413-434. https://doi.org/10.1016/j.ijforecast.2009.12.012
- Zellner, A. and Chen, B. (2002). Bayesian modeling of economies and data requirements, Macroeconomic Dynamics, 5, 673-700.
- Zellner, A. and Tobias, J. (2001). Further results on Bayesian method of moments analysis of the multiple regression model, International Economic Review, 42, 121-139. https://doi.org/10.1111/1468-2354.00103