DOI QR코드

DOI QR Code

Patent citation network analysis

특허 인용 네트워크 분석

  • Received : 2016.02.11
  • Accepted : 2016.04.25
  • Published : 2016.06.30

Abstract

The development of technology has changed the world drastically. Patent data analysis helps to understand modern technology trends and predict prospective future technology. In this paper, we analyze the patent citation network using the USPTO data between 1985 and 2012 to identify technology trends. We use network centrality measures that include a PageRank algorithm to find core technologies and identify groups of technology with similar properties with statistical network models.

과학 기술의 발전은 사회를 급격하게 변화시켜 왔다. 특허 자료 분석은 현대 과학 기술의 흐름을 이해하고 미래 유망기술을 예측할 수 있게 한다. 본 연구에서는 기술의 동향을 파악하고자 1985년과 2012년 사이에 미국 특허청에 등록된 특허를 중심으로 특허 인용 네트워크를 분석한다. 주요 기술군을 파악하기 위해 PageRank 알고리즘 외에 다양한 중심성 지표를 이용하고, 통계적 네트워크 모형을 통해 유사한 기술들의 군집을 찾아내고자 한다.

Keywords

References

  1. Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine, Computer Networks and ISDN Systems, 30, 107-117. https://doi.org/10.1016/S0169-7552(98)00110-X
  2. Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research, Interjornal, Complex Systems, 1695.
  3. Daudin, J. J., Picard, F., and Robin, S. (2008). A mixture model for random graphs, Statistics and Computing, 18, 173-183. https://doi.org/10.1007/s11222-007-9046-7
  4. Handcock, M. S., Raftery, A. E., and Tantrum, J. M. (2007). Model-based clustering for social networks, Journal of the Royal Statistical Society: Series A (Statistics in Society), 170, 301-354. https://doi.org/10.1111/j.1467-985X.2007.00471.x
  5. Kolaczyk, E. D. and Csardi, G. (2014). Statistical Analysis of Network Data with R, Springer, New York.
  6. Krivitsky, P. N. and Handcock, M. (2008). Fitting position latent cluster models for social networks with latentnet, Journal of Statistical Software, 24(i05).
  7. Latouche, P., Birmele, E., and Ambroise, C. (2012). Variational Bayesian inference and complexity control for stochastic block models, Statistical Modelling, 12, 93-115. https://doi.org/10.1177/1471082X1001200105
  8. Li, X., Lin, Y., Chen, H., and Roco, M. C. (2007). Worldwide nanotechnology development: a comparative study of USPTO, EPO, and JPO patents (1976-2004), Journal of Nanoparticle Research, 9, 977-1002. https://doi.org/10.1007/s11051-007-9273-z
  9. Oh, S., Lei, Z., and Yen, J. (2012). Evaluating and ranking patents using weighted citations. In Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries, 281-284.
  10. Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank citation ranking: bringing order to the web, Stanford InfoLab.
  11. Shortreed, S., Handcock, M. S., and Hoff, P. (2006). Positional estimation within a latent space model for networks, Methodology, 2, 24-33. https://doi.org/10.1027/1614-2241.2.1.24
  12. Xing, W. and Ghorbani, A. (2004). Weighted PageRank algorithm. In Proceedings of the Second Annual Conference on Communication Networks and Services Research, 305-314.
  13. Yoo, S.-H., Lee, Y.-H., and Won, D.-K. (2007). A study on the measurement of technological impact using citation analysis of patent information, Journal of Korea Technology Innovation Society, 10, 687-705.

Cited by

  1. Innovation of technology and social changes - quantitative analysis based on patent big data vol.29, pp.6, 2016, https://doi.org/10.5351/KJAS.2016.29.6.1025