DOI QR코드

DOI QR Code

Preliminary test estimation method accounting for error variance structure in nonlinear regression models

비선형 회귀모형에서 오차의 분산에 따른 예비검정 추정방법

  • Yu, Hyewon (Department of Applied statistics, Chung-Ang University) ;
  • Lim, Changwon (Department of Applied statistics, Chung-Ang University)
  • 유혜원 (중앙대학교 응용통계학과) ;
  • 임창원 (중앙대학교 응용통계학과)
  • Received : 2016.02.11
  • Accepted : 2016.04.25
  • Published : 2016.06.30

Abstract

We use nonlinear regression models (such as the Hill Model) when we analyze data in toxicology and/or pharmacology. In nonlinear regression models an estimator of parameters and estimation of measurement about uncertainty of the estimator are influenced by the variance structure of the error. Thus, estimation methods should be different depending on whether the data are homoscedastic or heteroscedastic. However, we do not know the variance structure of the error until we actually analyze the data. Therefore, developing estimation methods robust to the variance structure of the error is an important problem. In this paper we propose a method to estimate parameters in nonlinear regression models based on a preliminary test. We define an estimator which uses either the ordinary least square estimation method or the iterative weighted least square estimation method according to the results of a simple preliminary test for the equality of the error variance. The performance of the proposed estimator is compared to those of existing estimators by simulation studies. We also compare estimation methods using real data obtained from the National Toxicology program of the United States.

일반적으로 독성학 또는 약리학에서는 자료를 분석할 때 Hill Model과 같은 비선형 회귀모형을 사용한다. 비선형 회귀모형에서 모수의 추정량과 그것의 불확실성(uncertainty)에 대한 측도의 추정은 오차의 분산 구조에 영향을 받게 된다. 따라서 자료가 등분산인지 혹은 이분산인지에 따라 사용하여야 할 추정 방법이 달라져야 한다. 그러나 일반적으로 자료를 실제로 분석하기 전에는 오차의 분산구조에 대해서 잘 알 수 없다. 그러므로 오차의 분산구조에 로버스트한 추정 방법을 개발하는 것은 중요한 문제이다. 본 논문에서는 예비검정 방법을 기반으로 한 비선형 회귀모형에서의 모수 추정 방법을 제안하였다. 오차 분산의 등분산성에 대한 간단한 예비검정의 결과에 따라 보통 최소제곱 추정(ordinary Least Square Estimation) 방법과 반복 가중 최소제곱 추정(iterative weighted least square estimation) 방법을 사용하는 추정량을 정의하였다. 제안된 추정량은 모의실험 연구를 통하여 기존의 표준적인 추정량들과 그 성능을 비교하였다. 또한 미국의 National Toxicology Program으로부터 얻어진 실제자료를 사용하여 추정 방법들을 비교하였다.

Keywords

References

  1. Avalos, M., Mak, C., Randall, P. K., Trzeciakowski, J. P., Abell, C., Kwan, S.-W., and Wilcox, R. E. (2001). Nonlinear analysis of partial dopamine agonist effects on cAMP in C6 glioma cells, Journal of Pharmacological and Toxicological Methods, 45, 17-37. https://doi.org/10.1016/S1056-8719(01)00118-6
  2. Barata, C., Baird, D. J., Nogueira, A. J. A., Soares, A. M. V. M., and Riva, M. C. (2006). Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment, Aquatic Toxicology, 78, 1-14. https://doi.org/10.1016/j.aquatox.2006.01.013
  3. Brown, M. B. and Forsythe, A. B. (1974). Robust tests for the equality of variances, Journal of the American Statistical Association, 69, 364-367. https://doi.org/10.1080/01621459.1974.10482955
  4. Bucher, J. R. (2007). NTP Toxicity studies of sodium dichromate dihydrate (CAS No. 7789-12-0) administered in drinking water to male and female F344/N rats and B6C3F1 mice and male BALB/c and am3-C57BL/6 mice, Toxicity Report Series, 72, 1-G4.
  5. Carapeto, M. and Holt, W. (2003). Testing for heteroscedasticity in regression models, Journal of Applied Statistics, 30, 13-20. https://doi.org/10.1080/0266476022000018475
  6. Carroll, R. J. (1982). Adapting for heteroscedasticity in linear models, The Annals of Statistics, 10, 1223-1233.
  7. Carroll, R. J. and Ruppert, D. (1982). Robust estimation in heteroscedastic linear models, The Annals of Statistics, 10, 429-441. https://doi.org/10.1214/aos/1176345784
  8. Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression, Chapman and Hall, New York.
  9. Carroll, R. J., Wu, C. F. J., and Ruppert, D. (1988). The effect of estimating weights in weighted least squares, Journal of the American Statistical Association, 83, 1045-1054. https://doi.org/10.1080/01621459.1988.10478699
  10. Crofton, K. M., Paul, K. B., DeVito, M. J., and Hedge, J. M. (2007). Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine, Environmental Toxicology and Pharmacology, 24, 194-197. https://doi.org/10.1016/j.etap.2007.04.008
  11. Davidian, M. and Carroll, R. J. (1987). Variance function estimation, Journal of the American Statistical Association, 82, 1079-1091. https://doi.org/10.1080/01621459.1987.10478543
  12. Gaylor, D. W. and Aylward, L. L. (2004). An evaluation of benchmark dose methodology for non-cancer continuous-data health effects in animals due to exposures to dioxin (TCDD), Regulatory Toxicology and Pharmacology, 40, 9-17. https://doi.org/10.1016/j.yrtph.2004.04.002
  13. Hill, A. V. (1910). The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, Journal of Physiology, 40(Suppl), iv-vii.
  14. Hoferkamp, C. and Peddada, S. D. (2001). Test of homogeneity of variances against ordered alternatives in fixed effects linear models, Sankhya Series B, 48, 354-371.
  15. Huber, P. J. (1981). Robust Statistics, John Wiley & Sons, New York.
  16. Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). Applied Linear Statistical Models, McGraw-Hill/Irwin, New York.
  17. Levene, H. (1960). Robust tests for equality of variances, Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, 2, 278-292.
  18. Lim, C., Sen, P. K., and Peddada, S. D. (2012). Accounting for uncertainty in heteroscedasticity in nonlinear regression, Journal of Statistical Planning and Inference, 142, 1047-1062. https://doi.org/10.1016/j.jspi.2011.11.003
  19. Lim, C., Sen, P. K., and Peddada, S. D. (2013). Robust analysis of high throughput screening (HTS) assay data, Technometrics, 55, 150-160. https://doi.org/10.1080/00401706.2012.749166
  20. Lin, J.-G. and Wei, B.-C. (2003). Testing heteroscedasticity in nonlinear regression models, Communications in Statistics-Theory and Methods, 32, 171-192. https://doi.org/10.1081/STA-120017806
  21. Morris, J. B., Symanowicz, P., and Sarangapani, R. (2002). Regional distribution and kinetics of vinyl acetate hydrolysis in the oral cavity of the rat and mouse, Toxicology Letters, 126, 31-39. https://doi.org/10.1016/S0378-4274(01)00442-8
  22. Nitcheva, D. K., Piegorsch, W. W., West, R. W., and Kodell, R. L. (2005). Multiplicity-adjusted inferences in risk assessment with non-quantal data, Journal of Biopharmaceutical Statistics, 15, 17-31.
  23. Nordstokke, D. W. and Zumbo, B. D. (2010). A new nonparametric Levene test for equal variances, Psicologica, 31, 401-430.
  24. Piegorsch, W. W. and West, R. W. (2005). Benchmark analysis: shopping with proper condence, Risk Analysis, 25, 913-920. https://doi.org/10.1111/j.1539-6924.2005.00636.x
  25. Pounds, J. G., Haider, J., Chen, D. G., and Mumtaz, M. (2004). Interactive toxicity of simple chemical mixtures of cadmium, mercury, methylmercury and trimethyltin: model-dependent responses, Environmental Toxicology and Pharmacology, 18, 101-113. https://doi.org/10.1016/j.etap.2004.05.012
  26. Sand, S., von Rosen, D., Eriksson, P., Fredriksson, A., Viberg, H., Victorin, K., and Filipsson, A. F. (2004). Doseresponse modeling and benchmark calculations from spontaneous behavior data on mice neonatally exposed to 2, 20, 4, 40, 5-pentabromodiphenyl ether, Toxicological Sciences, 81, 491-501. https://doi.org/10.1093/toxsci/kfh222
  27. Seber, G. A. F. and Wild, C. H. (1989). Nonlinear Regression, Wiley, New York.
  28. Shao, J. (1992). Consistency of lest-squares estimator and its jackknife variance estimator in nonlinear model, Canadian Journal of Statistics, 20, 415-428. https://doi.org/10.2307/3315611
  29. Velarde, G., Ait-aissa, S., Gillet, C., Rogerieux, F., Lambre, C., Vindimian, E., and Porcher, J. M. (1999). Use of transepithelial electrical resistance in the study of pentachlorophenol toxicity, Toxicology in Vitro, 13, 723-727. https://doi.org/10.1016/S0887-2333(99)00048-X
  30. Wu, Y., Piegorsch, W. W., West, W., Tang, D., Petkewich, M. O., and Pan, W. (2006). Multiplicity-adjusted inferences in risk assessment: benchmark analysis with continuous response data, Environmental and Ecological Statistics, 13, 125-141. https://doi.org/10.1007/s10651-005-5695-x