DOI QR코드

DOI QR Code

Convergence of Fluid Dynamics and Computer Simulation for the Internal Investigation of Fuel Cell

유체역학과 컴퓨터 시뮬레이션의 융합을 통한 연료전지의 분석

  • Kim, Se Hyun (Dept. of New Energy & Resource Engineering, Sangji University)
  • 김세현 (상지대학교 신에너지자원공학과)
  • Received : 2016.04.26
  • Accepted : 2016.06.20
  • Published : 2016.06.28

Abstract

A numerical model is developed to predict distributions of current density and temperature. Also the complete fuel cell performances were compared. In this study the effect of flow field design and flow direction on current density and temperature distribution as well as full cell performance. The complete three-dimensional Navier-Stokes equations were solved with convergence of electro-chemical reactions terms. In this paper, the two different flow field design were simulated, straight channel and rectangular serpentine flow channel, which is commonly used. The effect of flow direction, co-flow and counter-flow, was also analyzed. The current density and temperature is higher with abundant oxygen not fuel. Also, temperature distribution was able to be drawn by using computer simulation. In this paper, the relationship among flow pattern, flow field design and current denstity distribution.

3차원 모델링을 이용하여 연료전지의 유로형상과 유체의 흐름 방향에 따른 연료전지의 성능에의 영향성을 분석을 수행하였다. 본 연구에서 연료전지 내부의 각 유로형상과 유동장의 변화에 전류밀도와 온도의 분포가 어떻게 이루어져 있는지를 분석하였고, 연료전지 단위셀의 전체적인 성능을 분석하였다. 3차원 모델링을 수행하기 위하여 Navier-Stokes 방정식을 전산유체역학을 이용하여 풀었다. 전산유체역학에 전기화학반응의 모델을 융합하여 계산을 수행하였다. 또한, 본 연구에서는 직선유로와 실제 사용되는 형태인 직사각형 모양의 유로형태를 모사하여 유로구조의 영향성을 분석하였다. 그리고 유체의 유동장을 변형시켜 그 영향성과 결과를 비교해 보았다. 본 전산모사 연구를 통하여 연료가 풍부한 부분보다는 산소가 풍부한 부분에서 전류밀도가 보다 높은 것을 확인할 수 있었다. 또한 전반적으로 전류밀도가 높은 곳에서 온도가 높은 것으로 확인할 수 있었다. 본 연구를 통하여 온도의 분포와 유로형상과 유동장 그리고 전류밀도의 연관성을 확인할 수 있었다.

Keywords

References

  1. W. K. Lee, C. Ho, J. W. Van Zee and M. Murthy, "The effects of compression and gas diffusion layers on the performance of a PEM fuel cell", J. of Power Sources, Vol. 84, pp. 45-51, 1999. https://doi.org/10.1016/S0378-7753(99)00298-0
  2. S-h. Kim, S. Shimpalee and J. W. Van Zee, "The effect of stoichiometry on dynamic behavior of a PEM fuel cell during load change", J. of Power Sources, Vol. 135, pp. 110-121, 2004. https://doi.org/10.1016/j.jpowsour.2004.03.060
  3. S-h. Kim, S. Shimpalee and J. W. Van Zee, "The effect of reservoir and fuel dilution on the dynamic behavior of a PEM fuel cell", J. of Power Sources, Vol. 137, pp. 43-52, 2004. https://doi.org/10.1016/j.jpowsour.2004.05.035
  4. S-h. Kim, S. Shimpalee and J. W. Van Zee, "The effect of flow field design and coltage range on the dynamic behavior of a PEMFC", J. of Electrochem. Soc., Vol. 152, pp. A1265-A1271, 2005. https://doi.org/10.1149/1.1901043
  5. S. Kiattamrong, Angkee Sripakagorn, "Effects of the Geometry of the Air Flowfield on the Performance of an Open-Cathode PEMFC - Transient Load Operation", Energy Procedia, Vol. 79, pp. 612-619, 2015. https://doi.org/10.1016/j.egypro.2015.11.541
  6. B. Kim, D. Cha and Y. Kim, "The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions", Applied Energy, Vol. 138, pp. 143-149, 2015. https://doi.org/10.1016/j.apenergy.2014.10.046
  7. J. Shan, R. Lin, S. Xia, D. Liu and Q. Zhang, "Local resolved investigation of PEMFC performance degradation mechanism during dynamic driving cycle", Int. J Hyd. Energy, Vol. 41, No. 7, pp. 4239-4250, 2016. https://doi.org/10.1016/j.ijhydene.2016.01.048
  8. J. Shan, R. Lin, S. Xia, D. Liu and Q. Zhang, "Local resolved investigation of PEMFC performance degradation mechanism during dynamic driving cycle", Int. J Hyd. Energy, Vol. 41, No. 7, pp. 4239-4250, 2016. https://doi.org/10.1016/j.ijhydene.2016.01.048
  9. S. M. Chang and H. S. Chu, "Transient behavior of a PEMFC", J. of Power Sources, Vol. 161, No 2, pp. 1161-1168, 2006. https://doi.org/10.1016/j.jpowsour.2006.06.025
  10. Q. S., M. Hou, X. Yan, D. Liang, Z. Zang, L. Hao, Z. Shao, Z. Hou, P. Ming, B. Yi, "The voltage characteristics of proton exchange membrane fuel cell (PEMFC) under steady and transient states", J. of Power Sources, Vol. 179, No 1, pp. 292-296, 2008. https://doi.org/10.1016/j.jpowsour.2007.12.049
  11. T. V. Reshetenkoa, G. Bender, K. Bethunea, R. Rocheleau, "A segmented cell approach for studying the effects of serpentine flow field parameters on PEMFC current distribution", Electrochim. Acta, Vol. 88, pp. 571-579, 2013. https://doi.org/10.1016/j.electacta.2012.10.103
  12. T.V. Nguyen, R.E. White, "A water and heat management models for PEMFC", J. Electrochem. Soc. Vol. 140, pp. 2178-2186, 1993. https://doi.org/10.1149/1.2220792
  13. T. F. Fuller, J. Newman, "Water and thermal management in solid polymer electrolyte fuel cells", J. Electrochem. Soc., Vol. 140 pp. 1218-1225, 1993. https://doi.org/10.1149/1.2220960
  14. S. Shimpalee, D. Dutta, W. K. Lee and J. W. Van Zee, "Effect of humidity on PEM fuel cell performance Part II: Numerical Simulation", Proc. of ASME IMECE, Nashville, TN HTD 364-1, pp. 367-364, 1999.
  15. S. Dutta, S. Shimpalee and J. W. Van Zee, "Threedimensional numerical simulation of straight channel PEM fuel cells", J. Appl. Electrochem., Vol.135 pp. 30-46. 2000.
  16. K.-Y. Chung and S. Kim, "Optimization of fuel processing unit of fuel cell system using six-sigma technique", J. Digital Policy & Management, Vol. 10, No. 2, pp. 225-229. 2012.
  17. S. Kim, "Performance Analysis of PEMFC Using Computational Flow Dynamics (CFD)", J. Digital Policy & Management, Vol.11 No. 8, pp. 199-204. 2013.