Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Antonyuk, E.Y. and Plakhtienko, N.P. (2004), "Dynamic modes of one seismic-damping mechanism with frictional bonds", Int. Appl. Mech., 40(6), 702-708. https://doi.org/10.1023/B:INAM.0000041399.99257.b3
- Begley, C.J. and Virgin, L.N. (1998), "Impact response and the influence of friction", J. Sound Vib., 211(5), 801-818. https://doi.org/10.1006/jsvi.1997.1389
- Chung, L.L., Kao, P.S., Yang, C.Y., Wu, L.Y. and Chen, H.M. (2015), "Optimal frictional coefficient of structural isolation system", J. Vib. Control, 21(3), 525-538. https://doi.org/10.1177/1077546313487938
- Cui, S. (2012), "Integrated design methodology for isolated floor systems in single-degree-of-freedom structural fuse systems", Ph.D. Dissertation, State University of New York, Buffalo.
- Fahjan, Y. and Ozdemir, Z. (2008), "Scaling of earthquake accelerograms for non-linear dynamic analysis to match the earthquake design spectra", The 14th World Conference on Earthquake Engineering, Chinese Society for Earthquake Engineering, Beijing, China.
- Flom, D.G. and Bueche, A.M. (1959), "Theory of rolling friction for spheres", J. Appl. Phys., 30(11), 1725-1730. https://doi.org/10.1063/1.1735043
- Guerreiro, L., Azevedo, J. and Muhr, A.H. (2007), "Seismic tests and numerical modeling of a rolling-ball isolation system", J. Earthq. Eng., 11(1), 49-66. https://doi.org/10.1080/13632460601123172
- Harvey, P.S. and Gavin, H.P. (2013), "The nonholonomic and chaotic nature of a rolling isolation system", J. Sound Vib., 332(14), 3535-3551. https://doi.org/10.1016/j.jsv.2013.01.036
- Harvey, P.S. and Gavin, H.P. (2014), "Double rolling isolation systems: a mathematical model and experimental validation", Int. J. Non-Linear Mech., 61(1), 80-92. https://doi.org/10.1016/j.ijnonlinmec.2014.01.011
- Harvey, P.S. and Gavin, H.P. (2015), "Assessment of a rolling isolation system using reduced order structural models", Eng. Struct., 99, 708-725. https://doi.org/10.1016/j.engstruct.2015.05.022
- Harvey, P.S., Wiebe, R. and Gavin, H.P. (2013) "On the chaotic response of a nonlinear rolling isolation system", Physica D: Nonlinear Phenomena, 256-257, 36-42. https://doi.org/10.1016/j.physd.2013.04.013
- Harvey, P.S., Zehil, G.P. and Gavin, H.P. (2014), "Experimental validation of a simplified model for rolling isolation systems", Earthq. Eng. Struct. Dyn., 43(7), 1067-1088. https://doi.org/10.1002/eqe.2387
- Ismail, M. (2015), "An isolation system for limited seismic gaps in near-fault zones", Earthq. Eng. Struct. Dyn., 44(7), 1115-1137. https://doi.org/10.1002/eqe.2504
- Ismail, M. and Casas, J.R. (2014), "Novel isolation device for protection of cable-stayed bridges against near-fault earthquakes", J. Bridge Eng., 19(8), 50-65.
- Ismail, M., Rodellar, J. and Pozo, F. (2014), "An isolation device for near-fault ground motions", Struct. Control Hlth. Monit., 21(3), 249-268. https://doi.org/10.1002/stc.1549
- Ismail, M., Rodellar, J. and Pozo, F. (2015), "Passive and hybrid mitigation of potential near-fault inner pounding of a self-braking seismic isolator", Soil Dyn. Earthq. Eng., 69(2), 233-250. https://doi.org/10.1016/j.soildyn.2014.10.019
- Jangid, R.S. (2000), "Stochastic seismic response of structures isolated by rolling rods", Eng. Struct., 22(8), 937-946. https://doi.org/10.1016/S0141-0296(99)00041-3
- Jangid, R.S. and Londhe, Y.B. (1998), "Effectiveness of elliptical rolling rods for base isolation", J. Struct. Eng., 124(4), 469-472. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(469)
- JTJ004-89, Standard of the Ministry of Communications of P.R. China (1989), Specifications of Earthquake Resistant Design for Highway Engineering, China Communications Press, Beijing, China. (in Chinese)
- Kosntantinidis, D. and Makris, N. (2009), "Experimental and analytical studies on the response of freestanding laboratory equipment to earthquake shaking", Earthq. Eng. Struct. Dyn., 38(6), 827-848. https://doi.org/10.1002/eqe.871
- Kurita, K., Aoki, S., Nakanishi, Y., Tominaga, K. and Kanazawa, M. (2011), "Fundamental characteristics of reduction system for seismic response using friction force", J. Civ. Eng. Architec., 5(11), 1042-1047.
- Lee, G.C., Ou, Y.C., Niu, T.C., Song, J.W. and Liang, Z. (2010), "Characterization of a roller seismic isolation bearing with supplemental energy dissipation for highway bridges", J. Struct. Eng., 136(5), 502-510. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000136
- Lewis, A.D. and Murray, R.M. (1995), "Variational principles for constrained systems: Theory and experiment", Int. J. Non-Linear Mech., 30(6), 793-815. https://doi.org/10.1016/0020-7462(95)00024-0
- Nanda, R.P., Agarwal, P. and Shrikhande, M. (2012), "Base isolation system suitable for masonry buildings", Asian J. Civ. Eng. (Building and Housing), 13(2), 195-202.
- Ortiz, N.A., Magluta, C. and Roitman, N. (2015), "Numerical and experimental studies of a building with roller seismic isolation bearings", Struct. Eng. Mech., 54(3), 475-489. https://doi.org/10.12989/sem.2015.54.3.475
- Ou, Y.C., Song, J.W. and Lee, G.C. (2010), "A parametric study of seismic behavior of roller seismic isolation bearings for highway bridges", Earthq. Eng. Struct. Dyn., 39(5), 541-559. https://doi.org/10.1002/eqe.958
- Siringoringo, D.M. and Fujino, Y. (2015), "Seismic response analyses of an asymmetric base-isolated building during the 2011 Great East Japan (Tohoku) Earthquake", Struct. Control Hlth. Monit., 22(1), 71-90. https://doi.org/10.1002/stc.1661
- Tsai, C.S., Lin, Y.C., Chen, W.S. and Su, H.C. (2010), "Tri-directional shaking table tests of vibration sensitive equipment with static dynamics interchangeable-ball pendulum system", Earthq. Eng. Eng. Vib., 9(1), 103-112. https://doi.org/10.1007/s11803-010-9009-4
- Wang, S.J., Hwang, J.S., Chang, K.C., Shiau, C.Y., Lin, W.C., Tsai, M.S., Hong, J.X. and Yang, Y.H. (2014), "Sloped multi-roller isolation devices for seismic protection of equipment and facilities", Earthq. Eng. Struct. Dyn., 43(10), 1443-1461. https://doi.org/10.1002/eqe.2404
- Wang, Y.J., Wei, Q.C., Shi, J. and Long, X.Y. (2010), "Resonance characteristics of two-span continuous beam under moving high speed trains", Latin Am. J. Solid. Struct., 7(2), 185-199. https://doi.org/10.1590/S1679-78252010000200005
- Wei, B., Cui, R.B. and Dai, G.L. (2013), "Seismic performance of a rolling-damper isolation system", J. Vibroeng., 15(3), 1504-1512.
- Wei, B., Dai, G.L., Wen, Y. and Xia, Y. (2014), "Seismic performance of an isolation system of rolling friction with spring", J. Central South Univ., 21(4), 1518-1525. https://doi.org/10.1007/s11771-014-2092-3
- Wei, B., Xia, Y. and Liu, W.A. (2014), "Lateral vibration analysis of continuous bridges utilizing equal displacement rule", Latin Am. J. Solid. Struct., 11(1), 75-91. https://doi.org/10.1590/S1679-78252014000100005
- Wei, B., Yang, T.H. and Jiang, L.Z. (2015), "Influence of friction variability on isolation performance of a rolling-damper isolation system", J. Vibroeng., 17(2), 792-801.
- Yim, C.S., Chopra, A.K. and Penzien, J. (1980), "Rocking response of rigid blocks to earthquakes", Earthq. Eng. Struct. Dyn., 8(6), 565-587. https://doi.org/10.1002/eqe.4290080606
- Yin, C.F. and Wei, B. (2013), "Numerical simulation of a bridge-subgrade transition zone due to moving vehicle in Shuohuang heavy haul railway", J. Vibroeng., 15(2), 1062-1068.
Cited by
- Seismic Isolation Characteristics of a Friction System vol.46, pp.4, 2018, https://doi.org/10.1520/JTE20160598
- Performance of bi-directional elliptical rolling rods for base isolation of buildings under near-fault earthquakes 2018, https://doi.org/10.1177/1369433217726896
- Methodology for the simultaneous optimization of location and parameters of friction dampers in the frequency domain pp.1029-0273, 2018, https://doi.org/10.1080/0305215X.2018.1428318
- The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction vol.17, pp.4, 2016, https://doi.org/10.12989/eas.2019.17.4.425
- Analysis of an Isolation System with Vertical Spring-viscous Dampers in Horizontal and Vertical Ground Motion vol.10, pp.4, 2020, https://doi.org/10.3390/app10041411