Acknowledgement
Supported by : National Nature Science Foundation of China
References
- Adhikari, B. and Banerjee, A. (2010), "Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII Sensing", Chem. Mater., 22(15), 4364-4371. https://doi.org/10.1021/cm1001253
- Aiken, J.D. and Finke, R.G. (1999), "A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis", J. Mol. Catal. A-Chem., 145(1-2), 1-44. https://doi.org/10.1016/S1381-1169(99)00098-9
- Balogh, L. and Tomalia, D.A. (1998), "Poly(amidoamine) dendrimer-templated nanocomposites. 1. synthesis of zerovalent copper nanoclusters", J. Am. Chem. Soc., 120, 7355-7356. https://doi.org/10.1021/ja980861w
- Blosi, M., Albonetti, S., Dondi, M., Martelli, C. and Baldi, G. (2010), "Microwave-assisted polyol synthesis of Cu nanoparticles", J. Nanopar. Res., 13(1), 127-138. https://doi.org/10.1007/s11051-010-0010-7
- Brust, M., Fink, J., Bethella, D., Schiffrina, D.J. and Kielyb, C. (1995), "Synthesis and reactions of functionalised gold nanoparticles", J. Am. Chem. Soc., 1655-1656.
- Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. and Whyman, R. (1994), "Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system", J. Am. Chem. Soc., 801-802.
- Cao, H., Chen, Z. and Huang, Y. (2015), "Copper nanocluster coupling europium as an off-to-on fluorescence probe for the determination of phosphate ion in water samples", Talanta, 143, 450-456. https://doi.org/10.1016/j.talanta.2015.05.024
- Cao, H., Chen, Z., Zheng, H. and Huang, Y. (2014), "Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging", Biosens. Bioelectron., 62, 189-195. https://doi.org/10.1016/j.bios.2014.06.049
- Capek, I. (2004), "Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions", Adv. Colloid. Interfac., 110(1-2), 49-74. https://doi.org/10.1016/j.cis.2004.02.003
- Chakraborty, P. (1998), "Metal nanoclusters in glasses as non-linear photonic materials", J. Mater. Sci., 33(9), 2235-2249. https://doi.org/10.1023/A:1004306501659
- Chang, S.S., Shih, C.W., Chen, C.D., Lai, W.C. and Chris Wang, C.R. (1999), "The shape transition of gold nanorods", Langmuir, 15(3), 701-709. https://doi.org/10.1021/la980929l
- Choi, S., Yu, J., Patel, S.A., Tzeng, Y.L. and Dickson, R.M. (2011), "Tailoring silver nanodots for intracellular staining", Photochem. Photobiol. Sci., 10(1), 109-115. https://doi.org/10.1039/C0PP00263A
- Cui, M., Song, G., Wang, C. and Song, Q. (2015), "Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI)", Microchim. Acta., 182(7-8), 1371-1377. https://doi.org/10.1007/s00604-015-1458-z
- Díez, I., Jiang, H. and Ras, R.H.A. (2010), "Enhanced smission of silver nanoclusters through quantitative phase transfer", Chem. Phys. Chem., 11, 3100-3104. https://doi.org/10.1002/cphc.201000431
- Feng, J., Ju, Y., Liu, J., Zhang, H. and Chen, X. (2015), "Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor", Anal. Chim. Acta., 854, 153-160. https://doi.org/10.1016/j.aca.2014.11.024
- Fernandez-Ujados, M., Trapiella-Alfonso, L., Costa-Fernandez, J.M., Pereiro, R. and Sanz-Medel, A. (2013), "One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction", Nanotechnology, 24(49), 495601. https://doi.org/10.1088/0957-4484/24/49/495601
- Ganguly, A., Chakraborty, I., Udayabhaskararao, T. and Pradeep, T. (2013), "A copper cluster protected with phenylethanethiol", J. Nanopart. Res., 15(4), 1522-1529. https://doi.org/10.1007/s11051-013-1522-8
- Gao, X., Lu, Y., Liu, M., He, S. and Chen, W. (2015), "Sub-nanometer sized Cu6(GSH)3 clusters: one-step synthesis and electrochemical detection of glucose", J. Mater. Chem. C, 3(16), 4050-4056. https://doi.org/10.1039/C5TC00246J
- Ghosh, A., Udayabhaskararao, T. and Pradeep, T. (2012), "One-step route to luminescent Au18SG14 in the condensed phase and its closed shell molecular ions in the gas phase", J. Phys. Chem. Lett., 3(15), 1997-2002. https://doi.org/10.1021/jz3007436
- Ghosh, R., Sahoo, A. K., Ghosh, S. S., Paul, A. and Chattopadhyay, A. (2014), "Blue-emitting copper nanoclusters synthesized in the presence of lysozyme as candidates for cell labeling", ACS Appl. Mater. Inter., 6(6), 3822-3828. https://doi.org/10.1021/am500040t
-
Goswami, N., Giri, A., Bootharaju, M.S., Xavier, P.L., Pradeep, T. and Pal, S.K. (2011), "Copper quantum clusters in protein matrix: potential sensor of
$Pb^{2+}$ ion", Anal. Chem., 83(24), 9676-9680. https://doi.org/10.1021/ac202610e - Hyotanishi, M., Isomura, Y., Yamamoto, H., Kawasaki, H. and Obora, Y. (2011), "Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions", Chem Commun, 47, 5750-5752. https://doi.org/10.1039/c1cc11487e
- Jia, X., Li, J. and Wang, E. (2013), "Cu nanoclusters with aggregation induced emission enhancement", Small, 9(22), 3873-3879. https://doi.org/10.1002/smll.201300896
- Jia, X., Li, J., Han, L., Ren, J., Yang, X. and Wang, E. (2012), "DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms", ACS Nano, 6(4), 3311-3317. https://doi.org/10.1021/nn3002455
- Jia, X., Yang, X., Li, J., Li, D. and Wang, E. (2014), "Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications", Chem. Commun., 50(2), 237-239. https://doi.org/10.1039/C3CC47771A
- Jin, R. (2010), "Quantum sized, thiolate-protected gold nanoclusters", Nanoscale, 2, 343-362. https://doi.org/10.1039/B9NR00160C
- Jin, R., Zhu, Y. and Qian, H. (2011), "Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals", Chem. Eur. J., 17, 6584-6593. https://doi.org/10.1002/chem.201002390
- Kawasaki, H., Kosaka, Y., Myoujin, Y., Narushima, T., Yonezawa, T. and Arakawa, R. (2011), "Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents", Chem. Commun., 47(27), 7740-7742. https://doi.org/10.1039/c1cc12346g
- Kawasaki, H., Yamamoto, H., Fujimori, H., Arakawa, R. and Iwasakia, M.I.Y. (2010), "Surfactant-free solution synthesis of fluorescent platinum subnanoclusters", Chem. Commun., 46, 3759-3761. https://doi.org/10.1039/b925117k
- Lin, C. (2009), "Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications", ACS Nano, 3(2), 395-401. https://doi.org/10.1021/nn800632j
- Ling, Y., Zhang, N., Qu, F., Wen, T., Gao, Z.F., Li, N.B. and Luo, H.Q. (2014), "Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters", Spectrochim. Acta. A: Mol. Biomol. Spectrosc., 118, 315-320. https://doi.org/10.1016/j.saa.2013.08.097
- Lisieck, I. and Pileni, M.P. (1993), "Synthesis of copper metallic clusters using reverse micelles as microreactors", J. Am. Chem. Soc., 115, 3887-3896. https://doi.org/10.1021/ja00063a006
- Liu, H. and Wang, C.Y. (2014), "Luminescent Cu(0)@Cu(I)-TGA core-shell nanoclusters via self-assembly", Synthetic. Met., 198, 329-334. https://doi.org/10.1016/j.synthmet.2014.10.044
- Liu, J. (2014), "DNA-stabilized, fluorescent, metal nanoclusters for biosensor development", TrAC-Trend. Anal. Chem., 58, 99-111. https://doi.org/10.1016/j.trac.2013.12.014
- Liu, Z., Peng, L. and Yao, K. (2006), "Intense blue luminescence from self-assembled Au-thiolate clusters", Mater. Lett., 60(19), 2362-2365. https://doi.org/10.1016/j.matlet.2006.01.016
- Lopez-Quintela, M.A. (2003), "Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control", Curr. Opin. Colloid. In., 8(2), 137-144. https://doi.org/10.1016/S1359-0294(03)00019-0
- Lopez-Quintela, M.A., Tojo, C., Blanco, M.C., García Rio, L. and Leis, J.R. (2004), "Microemulsion dynamics and reactions in microemulsions", Curr. Opin. Colloid. In., 9(3-4), 264-278. https://doi.org/10.1016/j.cocis.2004.05.029
- Luo, Y., Miao, H. and Yang, X. (2015), "Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1", Talanta, 144, 488-495. https://doi.org/10.1016/j.talanta.2015.07.001
- Mathew, A. and Pradeep, T. (2014), "Noble metal clusters: applications in energy, environment, and biology", Part. Part. Syst. Char., 31(10), 1017-1053. https://doi.org/10.1002/ppsc.201400033
- Morales, J. and Santos, J. (1999), "Electrical transport and magnetic properties of misfit layered compounds intercalated with cobaltocene", Chem. Mater., 11(10), 2737-2742. https://doi.org/10.1021/cm990127r
- Muhammed, M.A.H., Ramesh, S., Sinha, S., Pal, S.K. and Pradeep, T. (2008), "Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching", Nano. Res., 1(4), 333-340. https://doi.org/10.1007/s12274-008-8035-2
- Pal, N.K. and Kryschi, C. (2015), "A facile synthesis of highly stable and luminescent Ag clusters: a steady-state and time-resolved spectroscopy study", Phys. Chem. Chem. Phys., 17(3), 1957-1965. https://doi.org/10.1039/C4CP03683B
- Poater, A., Duran, M., Jaque, P., Toro-Labbe , A. and Sola, M. (2006), "Molecular structure and bonding of copper cluster monocarbonyls CunCO (n =1-9)", J. Phys. Chem. B, 110, 6526-6536. https://doi.org/10.1021/jp054690a
- Pyo, K., Thanthirige, V.D., Kwak, K., Pandurangan, P., Ramakrishna, G. and Lee, D. (2015), "Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)-thiolate shell", J. Am. Chem. Soc., 137(25), 8244-8250. https://doi.org/10.1021/jacs.5b04210
- Qu, X., Li, Y., Li, L., Wang, Y., Liang, J. and Liang, J. (2015), "Fluorescent gold nanoclusters: synthesis and recent biological application", J. Nanomater., 2015, 1-23.
-
Rao, T. (2010), "Luminescent
$Ag_7$ and$Ag_8$ slusters by interfacial synthesis", Angew. Chem. Int. Ed., 49, 3925-3929. https://doi.org/10.1002/anie.200907120 -
Rao, T., Nataraju, B. and Pradeep, T. (2010), "
$Ag_9$ quantum cluster through a solid-State route", J. Am. Chem. Soc., 132(46), 16304-16307. https://doi.org/10.1021/ja105495n - Reetz, M. T. and Helbig, W. (1994), "Size-selective synthesis of nanostructured transition metal clusters", J. Am. Chem. Soc., 116(16), 7401-7402. https://doi.org/10.1021/ja00095a051
- Rodriguez-Sanchez, L., Blanco, M.C. and Lopez-Quintela, M.A. (2000), "Electrochemical synthesis of silver nanoparticles", J. Phys. Chem. B, 104(41), 9683-9688. https://doi.org/10.1021/jp001761r
- Rodriguez-Sanchez, M.L., José Rodriguez, M. and Arturo Lopez-Quintela, M. (2005), "Kinetics and mechanism of the formation of Ag nanoparticles by electrochemical techniques: a plasmon and cluster time-resolved spectroscopic study", J. Phys. Chem. B, 109(3), 1183-1191. https://doi.org/10.1021/jp046056n
- Salorinne, K., Chen, X., Troff, R.W., Nissinen, M. and Hakkinen, H. (2012), "One-pot synthesis and characterization of subnanometre-size benzotriazolate protected copper clusters", Nanoscale, 4(14), 4095-4098. https://doi.org/10.1039/c2nr30444a
- Shang, L., Dong, S. and Nienhaus, G.U. (2011), "Ultra-small fluorescent metal nanoclusters: synthesis and biological applications", Nano Today, 6(4), 401-418. https://doi.org/10.1016/j.nantod.2011.06.004
- Shiang, Y.C., Huang, C.C., Chen, W.Y., Chen, P.C. and Chang, H.T. (2012), "Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging", J. Mater. Chem., 22(26), 12972-12982. https://doi.org/10.1039/c2jm30563a
- Udayabhaskararao, T. and Pradeep, T. (2013), "New protocols for the synthesis of stable Ag and Au nanocluster molecules", J. Phys. Chem. Lett., 4(9), 1553-1564. https://doi.org/10.1021/jz400332g
- Vazquez-Vazquez, C., Banobre-Lopez, M., Mitra, A., Lopez-Quintela, M.A. and Rivas, J. (2009), "Synthesis of small atomic copper clusters in microemulsions", Langmuir, 25(14), 8208-8216. https://doi.org/10.1021/la900100w
- Vilar-Vidal, N., Carmen Blanco, M., Lopez-Quintela, M.A., Rivas, J. and Serra, C. (2010), "Electrochemical synthesis of very stable photoluminescent copper clusters", J. Phys. Chem. C, 114, 15924-15930. https://doi.org/10.1021/jp911380s
- Vilar-Vidal, N., Rey, J.R. and Lopez Quintela, M.A. (2014), "Green emitter copper clusters as highly efficient and reusable visible degradation photocatalysts", Small, 10(18), 3632-3636. https://doi.org/10.1002/smll.201400679
- Vilar-Vidal, N., Rivas, J. and Lopez-Quintela, M.A. (2012), "Size dependent catalytic activity of reusable subnanometer copper(0) clusters", ACS Catal., 2(8), 1693-1697. https://doi.org/10.1021/cs300355n
- Vilar-Vidal, N., Rivas, J. and Lopez-Quintela, M.A. (2014), "Copper clusters as novel fluorescent probes for the detection and photocatalytic elimination of lead ions", Phys. Chem. Chem. Phys., 16(48), 26427-26430. https://doi.org/10.1039/C4CP02148G
- Wei, W., Lu, Y., Chen, W. and Chen, S. (2011), "One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters", J. Am. Chem. Soc., 133(7), 2060-2063. https://doi.org/10.1021/ja109303z
- Widegren, J.A. and Finke, R.G. (2003), "A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts", J. Mol. Catal. A-Chem., 191(2), 187-207. https://doi.org/10.1016/S1381-1169(02)00125-5
- Wilcoxon, J.P. and Abrams, B.L. (2006), "Synthesis, structure and properties of metal nanoclusters", Chem. Soc. Rev., 35(11), 1162-1194. https://doi.org/10.1039/b517312b
- Wu, Z., Suhan, J. and Jin, R. (2009), "One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters", J. Mater. Chem., 19(5), 622-626. https://doi.org/10.1039/B815983A
- Xu, H. and Suslick, K.S. (2010), "Sonochemical synthesis of highly fluorescent Ag nanoclusters", ACS Nano, 4(6), 3209-3214. https://doi.org/10.1021/nn100987k
- Yang, X., Feng, Y., Zhu, S., Luo, Y., Zhuo, Y. and Dou, Y. (2014), "One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution", Anal. Chim. Acta., 847, 49-54. https://doi.org/10.1016/j.aca.2014.07.019
- Yang, X., Shi, M., Zhou, R., Chen, X. and Chen, H. (2011), "Blending of HAuCl4 and histidine in aqueous solution: a simple approach to the Au10 cluster", Nanoscale, 3(6), 2596-2601. https://doi.org/10.1039/c1nr10287g
- Yang, Z., Li, Z., Xu, M., Ma, Y., Su, Y., Gao, F., Wei , H. and Zhang, L. (2013), "Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes", Nano-Micro. Lett., 5(4), 247-259.
- Yuan, X., Luo, Z., Zhang, Q., Zhang, X. and Xie, J. (2011), "Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer", ACS Nano, 5(11), 8800-8808. https://doi.org/10.1021/nn202860s
- Zhang, H., Huang, X., Li, L., Zhang, G., Hussain, I., Li, Z. and Tan, B. (2012), "Photoreductive synthesis of water-soluble fluorescent metal nanoclusters", Chem. Commun., 48(4), 567-569. https://doi.org/10.1039/C1CC16088E
- Zhang, L. and Wang, E. (2014), "Metal nanoclusters: new fluorescent probes for sensors and bioimaging", Nano Today, 9(1), 132-157. https://doi.org/10.1016/j.nantod.2014.02.010
- Zhao, X.J. and Huang, C.Z. (2014), "Water-soluble luminescent copper nanoclusters reduced and protected by histidine for sensing of guanosine 5′-triphosphate", New. J. Chem., 38(8), 3673-3677. https://doi.org/10.1039/C4NJ00731J
- Zheng, J. and Dickson, R.M. (2002), "Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence", J. Am. Chem. Soc., 124(47), 13982-13983. https://doi.org/10.1021/ja028282l
- Zheng, J., Petty, J.T. and Dickson, R.M. (2003), "High quantum yield blue emission from water-soluble Au8 nanodots", J. Am. Chem. Soc., 125(26), 7780-7781. https://doi.org/10.1021/ja035473v
- Zheng, J., Zhang, C. and Dickson, R.M. (2004), "Highly fluorescent, water-soluble, size-tunable gold quantum dots", Phys. Rev. Lett., 93(7), 077402. https://doi.org/10.1103/PhysRevLett.93.077402
- Zheng, J., Zhou, C., Yu, M. and Liu, J. (2012), "Different sized luminescent gold nanoparticles", Nanoscale, 4(14), 4073-4083. https://doi.org/10.1039/c2nr31192e
-
Zhou, T., Yao, Q., Zhao, T. and Chen, X. (2015), "One-pot synthesis of fluorescent DHLA-stabilized Cu nanoclusters for the determination of
$H_2O_2$ ", Talanta, 141, 80-85. https://doi.org/10.1016/j.talanta.2015.03.056
Cited by
- Aqueous Route to Stable Luminescent Tetranuclear Copper(I) Dithiophosphonate Clusters vol.58, pp.10, 2019, https://doi.org/10.1021/acs.inorgchem.9b00783
- Intriguing Plasmonic and Fluorescence Duality in Copper Nanoparticles vol.15, pp.5, 2020, https://doi.org/10.1007/s11468-020-01143-5
- Highly Stable Pyrimidine Based Luminescent Copper Nanoclusters with Superoxide Dismutase Mimetic and Nitric Oxide Releasing Activity vol.3, pp.11, 2016, https://doi.org/10.1021/acsabm.0c00675