DOI QR코드

DOI QR Code

Recent progress in the synthesis of luminescent copper clusters

  • Zhou, Shaochen (Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences) ;
  • Wang, Fu (Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences) ;
  • Wang, Chuanyi (Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences)
  • Received : 2015.12.09
  • Accepted : 2016.05.17
  • Published : 2016.06.25

Abstract

Luminescent metallic clusters have attracted great interest due to their unique optical, electronic and chemical features. Comparing with intensively studied Au and Ag Clusters, Cu clusters are superior in the aspects of cost and wide industrial demanding. However, tiny copper clusters are extremely prone to aggregate and undergo susceptibility of oxidation, thereby the synthesis of fluorescent zero valent copper clusters is rather challenging. In this review, synthetic strategies towards luminescent copper clusters, including macromolecule-protection and micro molecule-capping, have been systematically surveyed. Both "bottom-up" and "top-down" synthetic routes are found to be effective in fabricating luminescent copper clusters, some of which are quite stable and possess decent luminescence quantum yields. In general, the synthesis of fluorescent copper clusters remains at its infant stage. A great deal of effort on developing novel and economic synthetic routes to produce bright and stable copper clusters is highly expected in future.

Keywords

Acknowledgement

Supported by : National Nature Science Foundation of China

References

  1. Adhikari, B. and Banerjee, A. (2010), "Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII Sensing", Chem. Mater., 22(15), 4364-4371. https://doi.org/10.1021/cm1001253
  2. Aiken, J.D. and Finke, R.G. (1999), "A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis", J. Mol. Catal. A-Chem., 145(1-2), 1-44. https://doi.org/10.1016/S1381-1169(99)00098-9
  3. Balogh, L. and Tomalia, D.A. (1998), "Poly(amidoamine) dendrimer-templated nanocomposites. 1. synthesis of zerovalent copper nanoclusters", J. Am. Chem. Soc., 120, 7355-7356. https://doi.org/10.1021/ja980861w
  4. Blosi, M., Albonetti, S., Dondi, M., Martelli, C. and Baldi, G. (2010), "Microwave-assisted polyol synthesis of Cu nanoparticles", J. Nanopar. Res., 13(1), 127-138. https://doi.org/10.1007/s11051-010-0010-7
  5. Brust, M., Fink, J., Bethella, D., Schiffrina, D.J. and Kielyb, C. (1995), "Synthesis and reactions of functionalised gold nanoparticles", J. Am. Chem. Soc., 1655-1656.
  6. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. and Whyman, R. (1994), "Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system", J. Am. Chem. Soc., 801-802.
  7. Cao, H., Chen, Z. and Huang, Y. (2015), "Copper nanocluster coupling europium as an off-to-on fluorescence probe for the determination of phosphate ion in water samples", Talanta, 143, 450-456. https://doi.org/10.1016/j.talanta.2015.05.024
  8. Cao, H., Chen, Z., Zheng, H. and Huang, Y. (2014), "Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging", Biosens. Bioelectron., 62, 189-195. https://doi.org/10.1016/j.bios.2014.06.049
  9. Capek, I. (2004), "Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions", Adv. Colloid. Interfac., 110(1-2), 49-74. https://doi.org/10.1016/j.cis.2004.02.003
  10. Chakraborty, P. (1998), "Metal nanoclusters in glasses as non-linear photonic materials", J. Mater. Sci., 33(9), 2235-2249. https://doi.org/10.1023/A:1004306501659
  11. Chang, S.S., Shih, C.W., Chen, C.D., Lai, W.C. and Chris Wang, C.R. (1999), "The shape transition of gold nanorods", Langmuir, 15(3), 701-709. https://doi.org/10.1021/la980929l
  12. Choi, S., Yu, J., Patel, S.A., Tzeng, Y.L. and Dickson, R.M. (2011), "Tailoring silver nanodots for intracellular staining", Photochem. Photobiol. Sci., 10(1), 109-115. https://doi.org/10.1039/C0PP00263A
  13. Cui, M., Song, G., Wang, C. and Song, Q. (2015), "Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI)", Microchim. Acta., 182(7-8), 1371-1377. https://doi.org/10.1007/s00604-015-1458-z
  14. Díez, I., Jiang, H. and Ras, R.H.A. (2010), "Enhanced smission of silver nanoclusters through quantitative phase transfer", Chem. Phys. Chem., 11, 3100-3104. https://doi.org/10.1002/cphc.201000431
  15. Feng, J., Ju, Y., Liu, J., Zhang, H. and Chen, X. (2015), "Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor", Anal. Chim. Acta., 854, 153-160. https://doi.org/10.1016/j.aca.2014.11.024
  16. Fernandez-Ujados, M., Trapiella-Alfonso, L., Costa-Fernandez, J.M., Pereiro, R. and Sanz-Medel, A. (2013), "One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction", Nanotechnology, 24(49), 495601. https://doi.org/10.1088/0957-4484/24/49/495601
  17. Ganguly, A., Chakraborty, I., Udayabhaskararao, T. and Pradeep, T. (2013), "A copper cluster protected with phenylethanethiol", J. Nanopart. Res., 15(4), 1522-1529. https://doi.org/10.1007/s11051-013-1522-8
  18. Gao, X., Lu, Y., Liu, M., He, S. and Chen, W. (2015), "Sub-nanometer sized Cu6(GSH)3 clusters: one-step synthesis and electrochemical detection of glucose", J. Mater. Chem. C, 3(16), 4050-4056. https://doi.org/10.1039/C5TC00246J
  19. Ghosh, A., Udayabhaskararao, T. and Pradeep, T. (2012), "One-step route to luminescent Au18SG14 in the condensed phase and its closed shell molecular ions in the gas phase", J. Phys. Chem. Lett., 3(15), 1997-2002. https://doi.org/10.1021/jz3007436
  20. Ghosh, R., Sahoo, A. K., Ghosh, S. S., Paul, A. and Chattopadhyay, A. (2014), "Blue-emitting copper nanoclusters synthesized in the presence of lysozyme as candidates for cell labeling", ACS Appl. Mater. Inter., 6(6), 3822-3828. https://doi.org/10.1021/am500040t
  21. Goswami, N., Giri, A., Bootharaju, M.S., Xavier, P.L., Pradeep, T. and Pal, S.K. (2011), "Copper quantum clusters in protein matrix: potential sensor of $Pb^{2+}$ ion", Anal. Chem., 83(24), 9676-9680. https://doi.org/10.1021/ac202610e
  22. Hyotanishi, M., Isomura, Y., Yamamoto, H., Kawasaki, H. and Obora, Y. (2011), "Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions", Chem Commun, 47, 5750-5752. https://doi.org/10.1039/c1cc11487e
  23. Jia, X., Li, J. and Wang, E. (2013), "Cu nanoclusters with aggregation induced emission enhancement", Small, 9(22), 3873-3879. https://doi.org/10.1002/smll.201300896
  24. Jia, X., Li, J., Han, L., Ren, J., Yang, X. and Wang, E. (2012), "DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms", ACS Nano, 6(4), 3311-3317. https://doi.org/10.1021/nn3002455
  25. Jia, X., Yang, X., Li, J., Li, D. and Wang, E. (2014), "Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications", Chem. Commun., 50(2), 237-239. https://doi.org/10.1039/C3CC47771A
  26. Jin, R. (2010), "Quantum sized, thiolate-protected gold nanoclusters", Nanoscale, 2, 343-362. https://doi.org/10.1039/B9NR00160C
  27. Jin, R., Zhu, Y. and Qian, H. (2011), "Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals", Chem. Eur. J., 17, 6584-6593. https://doi.org/10.1002/chem.201002390
  28. Kawasaki, H., Kosaka, Y., Myoujin, Y., Narushima, T., Yonezawa, T. and Arakawa, R. (2011), "Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents", Chem. Commun., 47(27), 7740-7742. https://doi.org/10.1039/c1cc12346g
  29. Kawasaki, H., Yamamoto, H., Fujimori, H., Arakawa, R. and Iwasakia, M.I.Y. (2010), "Surfactant-free solution synthesis of fluorescent platinum subnanoclusters", Chem. Commun., 46, 3759-3761. https://doi.org/10.1039/b925117k
  30. Lin, C. (2009), "Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications", ACS Nano, 3(2), 395-401. https://doi.org/10.1021/nn800632j
  31. Ling, Y., Zhang, N., Qu, F., Wen, T., Gao, Z.F., Li, N.B. and Luo, H.Q. (2014), "Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters", Spectrochim. Acta. A: Mol. Biomol. Spectrosc., 118, 315-320. https://doi.org/10.1016/j.saa.2013.08.097
  32. Lisieck, I. and Pileni, M.P. (1993), "Synthesis of copper metallic clusters using reverse micelles as microreactors", J. Am. Chem. Soc., 115, 3887-3896. https://doi.org/10.1021/ja00063a006
  33. Liu, H. and Wang, C.Y. (2014), "Luminescent Cu(0)@Cu(I)-TGA core-shell nanoclusters via self-assembly", Synthetic. Met., 198, 329-334. https://doi.org/10.1016/j.synthmet.2014.10.044
  34. Liu, J. (2014), "DNA-stabilized, fluorescent, metal nanoclusters for biosensor development", TrAC-Trend. Anal. Chem., 58, 99-111. https://doi.org/10.1016/j.trac.2013.12.014
  35. Liu, Z., Peng, L. and Yao, K. (2006), "Intense blue luminescence from self-assembled Au-thiolate clusters", Mater. Lett., 60(19), 2362-2365. https://doi.org/10.1016/j.matlet.2006.01.016
  36. Lopez-Quintela, M.A. (2003), "Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control", Curr. Opin. Colloid. In., 8(2), 137-144. https://doi.org/10.1016/S1359-0294(03)00019-0
  37. Lopez-Quintela, M.A., Tojo, C., Blanco, M.C., García Rio, L. and Leis, J.R. (2004), "Microemulsion dynamics and reactions in microemulsions", Curr. Opin. Colloid. In., 9(3-4), 264-278. https://doi.org/10.1016/j.cocis.2004.05.029
  38. Luo, Y., Miao, H. and Yang, X. (2015), "Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1", Talanta, 144, 488-495. https://doi.org/10.1016/j.talanta.2015.07.001
  39. Mathew, A. and Pradeep, T. (2014), "Noble metal clusters: applications in energy, environment, and biology", Part. Part. Syst. Char., 31(10), 1017-1053. https://doi.org/10.1002/ppsc.201400033
  40. Morales, J. and Santos, J. (1999), "Electrical transport and magnetic properties of misfit layered compounds intercalated with cobaltocene", Chem. Mater., 11(10), 2737-2742. https://doi.org/10.1021/cm990127r
  41. Muhammed, M.A.H., Ramesh, S., Sinha, S., Pal, S.K. and Pradeep, T. (2008), "Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching", Nano. Res., 1(4), 333-340. https://doi.org/10.1007/s12274-008-8035-2
  42. Pal, N.K. and Kryschi, C. (2015), "A facile synthesis of highly stable and luminescent Ag clusters: a steady-state and time-resolved spectroscopy study", Phys. Chem. Chem. Phys., 17(3), 1957-1965. https://doi.org/10.1039/C4CP03683B
  43. Poater, A., Duran, M., Jaque, P., Toro-Labbe , A. and Sola, M. (2006), "Molecular structure and bonding of copper cluster monocarbonyls CunCO (n =1-9)", J. Phys. Chem. B, 110, 6526-6536. https://doi.org/10.1021/jp054690a
  44. Pyo, K., Thanthirige, V.D., Kwak, K., Pandurangan, P., Ramakrishna, G. and Lee, D. (2015), "Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)-thiolate shell", J. Am. Chem. Soc., 137(25), 8244-8250. https://doi.org/10.1021/jacs.5b04210
  45. Qu, X., Li, Y., Li, L., Wang, Y., Liang, J. and Liang, J. (2015), "Fluorescent gold nanoclusters: synthesis and recent biological application", J. Nanomater., 2015, 1-23.
  46. Rao, T. (2010), "Luminescent $Ag_7$ and $Ag_8$ slusters by interfacial synthesis", Angew. Chem. Int. Ed., 49, 3925-3929. https://doi.org/10.1002/anie.200907120
  47. Rao, T., Nataraju, B. and Pradeep, T. (2010), "$Ag_9$ quantum cluster through a solid-State route", J. Am. Chem. Soc., 132(46), 16304-16307. https://doi.org/10.1021/ja105495n
  48. Reetz, M. T. and Helbig, W. (1994), "Size-selective synthesis of nanostructured transition metal clusters", J. Am. Chem. Soc., 116(16), 7401-7402. https://doi.org/10.1021/ja00095a051
  49. Rodriguez-Sanchez, L., Blanco, M.C. and Lopez-Quintela, M.A. (2000), "Electrochemical synthesis of silver nanoparticles", J. Phys. Chem. B, 104(41), 9683-9688. https://doi.org/10.1021/jp001761r
  50. Rodriguez-Sanchez, M.L., José Rodriguez, M. and Arturo Lopez-Quintela, M. (2005), "Kinetics and mechanism of the formation of Ag nanoparticles by electrochemical techniques:  a plasmon and cluster time-resolved spectroscopic study", J. Phys. Chem. B, 109(3), 1183-1191. https://doi.org/10.1021/jp046056n
  51. Salorinne, K., Chen, X., Troff, R.W., Nissinen, M. and Hakkinen, H. (2012), "One-pot synthesis and characterization of subnanometre-size benzotriazolate protected copper clusters", Nanoscale, 4(14), 4095-4098. https://doi.org/10.1039/c2nr30444a
  52. Shang, L., Dong, S. and Nienhaus, G.U. (2011), "Ultra-small fluorescent metal nanoclusters: synthesis and biological applications", Nano Today, 6(4), 401-418. https://doi.org/10.1016/j.nantod.2011.06.004
  53. Shiang, Y.C., Huang, C.C., Chen, W.Y., Chen, P.C. and Chang, H.T. (2012), "Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging", J. Mater. Chem., 22(26), 12972-12982. https://doi.org/10.1039/c2jm30563a
  54. Udayabhaskararao, T. and Pradeep, T. (2013), "New protocols for the synthesis of stable Ag and Au nanocluster molecules", J. Phys. Chem. Lett., 4(9), 1553-1564. https://doi.org/10.1021/jz400332g
  55. Vazquez-Vazquez, C., Banobre-Lopez, M., Mitra, A., Lopez-Quintela, M.A. and Rivas, J. (2009), "Synthesis of small atomic copper clusters in microemulsions", Langmuir, 25(14), 8208-8216. https://doi.org/10.1021/la900100w
  56. Vilar-Vidal, N., Carmen Blanco, M., Lopez-Quintela, M.A., Rivas, J. and Serra, C. (2010), "Electrochemical synthesis of very stable photoluminescent copper clusters", J. Phys. Chem. C, 114, 15924-15930. https://doi.org/10.1021/jp911380s
  57. Vilar-Vidal, N., Rey, J.R. and Lopez Quintela, M.A. (2014), "Green emitter copper clusters as highly efficient and reusable visible degradation photocatalysts", Small, 10(18), 3632-3636. https://doi.org/10.1002/smll.201400679
  58. Vilar-Vidal, N., Rivas, J. and Lopez-Quintela, M.A. (2012), "Size dependent catalytic activity of reusable subnanometer copper(0) clusters", ACS Catal., 2(8), 1693-1697. https://doi.org/10.1021/cs300355n
  59. Vilar-Vidal, N., Rivas, J. and Lopez-Quintela, M.A. (2014), "Copper clusters as novel fluorescent probes for the detection and photocatalytic elimination of lead ions", Phys. Chem. Chem. Phys., 16(48), 26427-26430. https://doi.org/10.1039/C4CP02148G
  60. Wei, W., Lu, Y., Chen, W. and Chen, S. (2011), "One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters", J. Am. Chem. Soc., 133(7), 2060-2063. https://doi.org/10.1021/ja109303z
  61. Widegren, J.A. and Finke, R.G. (2003), "A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts", J. Mol. Catal. A-Chem., 191(2), 187-207. https://doi.org/10.1016/S1381-1169(02)00125-5
  62. Wilcoxon, J.P. and Abrams, B.L. (2006), "Synthesis, structure and properties of metal nanoclusters", Chem. Soc. Rev., 35(11), 1162-1194. https://doi.org/10.1039/b517312b
  63. Wu, Z., Suhan, J. and Jin, R. (2009), "One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters", J. Mater. Chem., 19(5), 622-626. https://doi.org/10.1039/B815983A
  64. Xu, H. and Suslick, K.S. (2010), "Sonochemical synthesis of highly fluorescent Ag nanoclusters", ACS Nano, 4(6), 3209-3214. https://doi.org/10.1021/nn100987k
  65. Yang, X., Feng, Y., Zhu, S., Luo, Y., Zhuo, Y. and Dou, Y. (2014), "One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution", Anal. Chim. Acta., 847, 49-54. https://doi.org/10.1016/j.aca.2014.07.019
  66. Yang, X., Shi, M., Zhou, R., Chen, X. and Chen, H. (2011), "Blending of HAuCl4 and histidine in aqueous solution: a simple approach to the Au10 cluster", Nanoscale, 3(6), 2596-2601. https://doi.org/10.1039/c1nr10287g
  67. Yang, Z., Li, Z., Xu, M., Ma, Y., Su, Y., Gao, F., Wei , H. and Zhang, L. (2013), "Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes", Nano-Micro. Lett., 5(4), 247-259.
  68. Yuan, X., Luo, Z., Zhang, Q., Zhang, X. and Xie, J. (2011), "Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer", ACS Nano, 5(11), 8800-8808. https://doi.org/10.1021/nn202860s
  69. Zhang, H., Huang, X., Li, L., Zhang, G., Hussain, I., Li, Z. and Tan, B. (2012), "Photoreductive synthesis of water-soluble fluorescent metal nanoclusters", Chem. Commun., 48(4), 567-569. https://doi.org/10.1039/C1CC16088E
  70. Zhang, L. and Wang, E. (2014), "Metal nanoclusters: new fluorescent probes for sensors and bioimaging", Nano Today, 9(1), 132-157. https://doi.org/10.1016/j.nantod.2014.02.010
  71. Zhao, X.J. and Huang, C.Z. (2014), "Water-soluble luminescent copper nanoclusters reduced and protected by histidine for sensing of guanosine 5′-triphosphate", New. J. Chem., 38(8), 3673-3677. https://doi.org/10.1039/C4NJ00731J
  72. Zheng, J. and Dickson, R.M. (2002), "Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence", J. Am. Chem. Soc., 124(47), 13982-13983. https://doi.org/10.1021/ja028282l
  73. Zheng, J., Petty, J.T. and Dickson, R.M. (2003), "High quantum yield blue emission from water-soluble Au8 nanodots", J. Am. Chem. Soc., 125(26), 7780-7781. https://doi.org/10.1021/ja035473v
  74. Zheng, J., Zhang, C. and Dickson, R.M. (2004), "Highly fluorescent, water-soluble, size-tunable gold quantum dots", Phys. Rev. Lett., 93(7), 077402. https://doi.org/10.1103/PhysRevLett.93.077402
  75. Zheng, J., Zhou, C., Yu, M. and Liu, J. (2012), "Different sized luminescent gold nanoparticles", Nanoscale, 4(14), 4073-4083. https://doi.org/10.1039/c2nr31192e
  76. Zhou, T., Yao, Q., Zhao, T. and Chen, X. (2015), "One-pot synthesis of fluorescent DHLA-stabilized Cu nanoclusters for the determination of $H_2O_2$", Talanta, 141, 80-85. https://doi.org/10.1016/j.talanta.2015.03.056

Cited by

  1. Aqueous Route to Stable Luminescent Tetranuclear Copper(I) Dithiophosphonate Clusters vol.58, pp.10, 2019, https://doi.org/10.1021/acs.inorgchem.9b00783
  2. Intriguing Plasmonic and Fluorescence Duality in Copper Nanoparticles vol.15, pp.5, 2020, https://doi.org/10.1007/s11468-020-01143-5
  3. Highly Stable Pyrimidine Based Luminescent Copper Nanoclusters with Superoxide Dismutase Mimetic and Nitric Oxide Releasing Activity vol.3, pp.11, 2016, https://doi.org/10.1021/acsabm.0c00675