References
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of afunctionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
- Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H.and Rahaeifard, M. (2010), "On the size-dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-2329. https://doi.org/10.1016/j.matdes.2009.12.006
- Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2011), "The modified couple stressfunctionally graded Timoshenko beam formulation", Mater. Des., 32(3) 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimen. Syst. Nanostr., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B: Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 029. https://doi.org/10.12989/anr.2015.3.1.029
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193
- Civalek, Ö., Cigdem, D., and Bekir, A. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15(2), 289-298.
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position andits effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screwdislocation and surface waves", J. Appl. Phys., 54(9) 4703-4710. https://doi.org/10.1063/1.332803
- Hamidi, A., Houari, M.S.A., Mahmoud, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear freevibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206. https://doi.org/10.1016/j.compositesb.2013.04.023
- Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally gradedmicrobeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration ofsize-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
- Ma'en, S.S. and Butcher, E.A. (2012), "Free vibration analysis of non-rotating and rotatingTimoshenko beams with damaged boundaries using the Chebyshev collocation method", Int. J. Mech. Sci., 60(1), 1-11. https://doi.org/10.1016/j.ijmecsci.2012.03.008
- Mahmoud, S., Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A. and Beg, O.A. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425. https://doi.org/10.12989/scs.2015.18.2.425
- Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flap wise bending vibration of a rotating nano cantilever", Physica E: Low-dimen. Syst. Nanostr., 42(7), 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
- Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysisof axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B: Eng., 42(4), 801-808. https://doi.org/10.1016/j.compositesb.2011.01.017
- Sharabiani, P.A. and Yazdi, M.R.H. (2013). (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B: Eng., 45(1), 581-586. https://doi.org/10.1016/j.compositesb.2012.04.064
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
- Tounsi, A., Bourada, M., Kaci, A. and Houari, M.S.A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409. https://doi.org/10.12989/scs.2015.18.2.409
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
- Wang, Q., and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659. https://doi.org/10.1088/0964-1726/15/2/050
- Wattanasakulpong, N. and Variddhi, U. (2014), "Linear and nonlinear vibration analysis ofelastically restrained ends FGM beams with porosities", Aerosp. Sci. Tech., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
- Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Materials science forum, 492, Trans Tech Publications.
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
- Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys.Rrev. B, 70(20), 205430. https://doi.org/10.1103/PhysRevB.70.205430
Cited by
- On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
- Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
- Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation vol.61, pp.2, 2017, https://doi.org/10.12989/sem.2017.61.2.209
- A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
- Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2016, https://doi.org/10.12989/anr.2021.10.1.025
- A compressive study for porous FG curved nanobeam under various boundary conditions via a nonlocal strain gradient theory vol.136, pp.2, 2016, https://doi.org/10.1140/epjp/s13360-021-01238-w
- Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2016, https://doi.org/10.12989/anr.2021.10.3.281