DOI QR코드

DOI QR Code

An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Barati, Mohammad Reza (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • Received : 2015.12.29
  • Accepted : 2016.03.10
  • Published : 2016.06.25

Abstract

This paper investigates the buckling behavior of shear deformable piezoelectric (FGP) nanoscale beams made of functionally graded (FG) materials embedded in Winkler-Pasternak elastic medium and subjected to an electro-magnetic field. Magneto-electro-elastic (MEE) properties of piezoelectric nanobeam are supposed to be graded continuously in the thickness direction based on power-law model. To consider the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of the embedded piezoelectric nanobeams are obtained. A Navier-type analytical solution is applied to anticipate the accurate buckling response of the FGP nanobeams subjected to electro-magnetic fields. To demonstrate the influences of various parameters such as, magnetic potential, external electric voltage, power-law index, nonlocal parameter, elastic foundation and slenderness ratio on the critical buckling loads of the size-dependent MEE-FG nanobeams, several numerical results are provided. Due to the shortage of same results in the literature, it is expected that the results of the present study will be instrumental for design of size-dependent MEE-FG nanobeams.

Keywords

References

  1. Alizada, A.N. and Sofiyev, A.H. (2011a), "Modified Young's moduli of nano-materials taking into account the scale effects and vacancies", Meccanica., 46(5), 915-920. https://doi.org/10.1007/s11012-010-9349-1
  2. Alizada, A.N. and Sofiyev, A.H. (2011b), "On the mechanics of deformation and stability of the beam with a nanocoating", J. Reinf. Plastic. Comp., 0731684411428382.
  3. Alizada, A.N., Sofiyev, A.H. and Kuruoglu, N. (2012), "Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load", Acta. Mech., 223(7), 1371-1383. https://doi.org/10.1007/s00707-012-0649-5
  4. Annigeri, A.R., Ganesan, N. and Swarnamani, S. (2007), "Free vibration behaviour of multiphase and layered magneto-electro-elastic beam", J. Sound. Vib., 299(1), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044
  5. Ansari, R., Hasrati, E., Gholami, R. and Sadeghi, F. (2015), "Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto-electro-thermo elastic nanobeams", Compos. Part. B. Eng., 83, 226-241. https://doi.org/10.1016/j.compositesb.2015.08.038
  6. Barati, M.R., Zenkour, A.M. and Shahverdi, H. (2016), "Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory", Compos. Struct., 141(1), 203-212 https://doi.org/10.1016/j.compstruct.2016.01.056
  7. Chen, W.Q., Lee, K.Y. and Ding, H.J. (2005), "On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates", J. Sound. Vib., 279(1), 237-251. https://doi.org/10.1016/j.jsv.2003.10.033
  8. Daga, A., Ganesan, N. and Shankar, K. (2009), "Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements", Int. J. Comput. Meth. Eng. Sci. Mech., 10(3), 173-185. https://doi.org/10.1080/15502280902797207
  9. Ebrahimi, F. and Salari, E. (2015a), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part. B. Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  10. Ebrahimi, F. and Salari, E. (2015b), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  11. Ebrahimi, F. and Barati, M.R. (2015), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  12. Eringen, A.C. and Edelen, D. G. B. (1972a), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  13. Eringen, A.C. (1972b), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  14. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  15. Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Analytical solution for functionally graded magneto-electro-elastic plane beams", Int. J. Eng. Sci., 45(2), 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005
  16. Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates", Int. J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012
  17. Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Phys. E., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002
  18. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta. Mech. Sinica., 30(4), 516-525. https://doi.org/10.1007/s10409-014-0072-3
  19. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment", Multidis. Model. Mater. Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401
  20. Li, X.Y., Ding, H.J. and Chen, W.Q. (2008), "Three-dimensional analytical solution for functionally graded magneto-electro-elastic circular plates subjected to uniform load", Compos. Struct., 83(4), 381-390. https://doi.org/10.1016/j.compstruct.2007.05.006
  21. Li, Y.S., Cai, Z.Y. and Shi, S.Y. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529. https://doi.org/10.1016/j.compstruct.2014.01.033
  22. Liu, M.F. and Chang, T.P. (2010), "Closed form expression for the vibration problem of a transversely isotropic magneto-electro-elastic plate", J. Appl. Mech., 77(2), 024502. https://doi.org/10.1115/1.3176996
  23. Mahmoud, S.R., Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A. and Bég, O.A. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425. https://doi.org/10.12989/scs.2015.18.2.425
  24. Milazzo, A.L.B.E.R.T.O., Orlando, C.A.L.O.G.E.R.O. and Alaimo, A.N.D.R.E.A. (2009), "An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem", Smart. Mater. Struct., 18(8), 085012. https://doi.org/10.1088/0964-1726/18/8/085012
  25. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
  26. Rahmani, O. and Jandaghian, A.A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A., 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z
  27. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
  28. Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034
  29. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  30. Sladek, J., Sladek, V., Krahulec, S., Chen, C.S. and Young, D.L. (2015), "Analyses of circular magnetoelectroelastic plates with functionally graded material properties", Mech. Adv. Mater. Struct., 22(6), 479-489. https://doi.org/10.1080/15376494.2013.807448
  31. Van Run, A.M.J.G., Terrell, D.R. and Scholing, J.H. (1974), "An in situ grown eutectic magnetoelectric composite material", J. Mater. Sci., 9(10), 1710-1714. https://doi.org/10.1007/BF00540771
  32. Wu, B., Zhang, C., Chen, W. and Zhang, C. (2015), "Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates", Smart. Mater. Struct., 24(9), 095017. https://doi.org/10.1088/0964-1726/24/9/095017
  33. Wu, C.P. and Tsai, Y.H. (2007), "Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux", Int. J. Eng. Sci., 45(9), 744-769. https://doi.org/10.1016/j.ijengsci.2007.05.002
  34. Xin, L. and Hu, Z. (2015), "Free vibration of simply supported and multilayered magneto-electro-elastic plates", Compos. Struct., 121, 344-350. https://doi.org/10.1016/j.compstruct.2014.11.030
  35. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693

Cited by

  1. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0465-1
  2. Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0511-z
  3. Size-dependent thermally affected wave propagation analysis in nonlocal strain gradient functionally graded nanoplates via a quasi-3D plate theory vol.232, pp.1, 2018, https://doi.org/10.1177/0954406216674243
  4. Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0368-1
  5. Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory vol.132, pp.1, 2017, https://doi.org/10.1140/epjp/i2017-11320-5
  6. Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams vol.132, pp.4, 2017, https://doi.org/10.1140/epjp/i2017-11366-3
  7. Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations vol.119, 2017, https://doi.org/10.1016/j.tws.2017.04.002
  8. Enhancement of quasi-static strain energy harvesters using non-uniform cross-section post-buckled beams vol.26, pp.8, 2017, https://doi.org/10.1088/1361-665X/aa746e
  9. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.058
  10. Dynamic modeling of smart shear-deformable heterogeneous piezoelectric nanobeams resting on Winkler–Pasternak foundation vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0466-0
  11. Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory vol.25, pp.4, 2018, https://doi.org/10.1080/15376494.2016.1255830
  12. A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams vol.4, pp.4, 2016, https://doi.org/10.12989/anr.2016.4.4.251
  13. Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams vol.40, pp.5, 2017, https://doi.org/10.1080/01495739.2016.1230483
  14. Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory vol.185, 2018, https://doi.org/10.1016/j.compstruct.2017.10.021
  15. Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.279
  16. Static stability analysis of embedded flexoelectric nanoplates considering surface effects vol.123, pp.10, 2017, https://doi.org/10.1007/s00339-017-1265-y
  17. Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams vol.131, pp.9, 2016, https://doi.org/10.1140/epjp/i2016-16346-5
  18. Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0441-9
  19. Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate vol.131, pp.12, 2016, https://doi.org/10.1140/epjp/i2016-16433-7
  20. Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams 2018, https://doi.org/10.1080/15376494.2017.1329468
  21. Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects vol.228, pp.3, 2017, https://doi.org/10.1007/s00707-016-1755-6
  22. Electro-magnetic effects on nonlocal dynamic behavior of embedded piezoelectric nanoscale beams vol.28, pp.15, 2017, https://doi.org/10.1177/1045389X16682850
  23. Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects 2018, https://doi.org/10.1080/17455030.2017.1337281
  24. Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates vol.39, pp.6, 2017, https://doi.org/10.1007/s40430-016-0646-z
  25. Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.245
  26. On nonlocal characteristics of curved inhomogeneous Euler–Bernoulli nanobeams under different temperature distributions vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0399-7
  27. Effect of three-parameter viscoelastic medium on vibration behavior of temperature-dependent non-homogeneous viscoelastic nanobeams in a hygro-thermal environment vol.25, pp.5, 2018, https://doi.org/10.1080/15376494.2016.1255831
  28. Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field vol.28, pp.11, 2017, https://doi.org/10.1177/1045389X16672569
  29. Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams vol.131, pp.11, 2016, https://doi.org/10.1140/epjp/i2016-16383-0
  30. Vibration analysis of embedded biaxially loaded magneto-electrically actuated inhomogeneous nanoscale plates 2017, https://doi.org/10.1177/1077546317708105
  31. Investigating physical field effects on the size-dependent dynamic behavior of inhomogeneous nanoscale plates vol.132, pp.2, 2017, https://doi.org/10.1140/epjp/i2017-11357-4
  32. Dynamic Modeling of Magneto-electrically Actuated Compositionally Graded Nanosize Plates Lying on Elastic Foundation vol.42, pp.5, 2017, https://doi.org/10.1007/s13369-017-2413-6
  33. Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.092
  34. Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory vol.24, pp.2, 2018, https://doi.org/10.1007/s00542-017-3492-8
  35. Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory 2017, https://doi.org/10.1080/15376494.2017.1329467
  36. Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory 2017, https://doi.org/10.1177/1077546317711537
  37. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory vol.25, pp.10, 2016, https://doi.org/10.1088/0964-1726/25/10/105014
  38. Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory vol.166, 2017, https://doi.org/10.1016/j.compstruct.2017.01.036
  39. Magnetic field effects on nonlocal wave dispersion characteristics of size-dependent nanobeams vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0646-y
  40. Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates vol.132, pp.4, 2017, https://doi.org/10.1140/epjp/i2017-11400-6
  41. Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments vol.25, pp.5, 2018, https://doi.org/10.1080/15376494.2017.1285453
  42. Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams vol.93, 2017, https://doi.org/10.1016/j.ymssp.2017.02.021
  43. On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory vol.162, 2017, https://doi.org/10.1016/j.compstruct.2016.11.058
  44. Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-Pasternak foundation vol.24, pp.10, 2018, https://doi.org/10.1177/1077546316678511
  45. Modelling of thermally affected elastic wave propagation within rotating Mori–Tanaka-based heterogeneous nanostructures vol.24, pp.6, 2018, https://doi.org/10.1007/s00542-018-3800-y
  46. Dynamic modeling of embedded curved nanobeams incorporating surface effects vol.5, pp.3, 2016, https://doi.org/10.12989/csm.2016.5.3.255
  47. Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory vol.61, pp.6, 2016, https://doi.org/10.12989/sem.2017.61.6.721
  48. A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
  49. Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions vol.19, pp.3, 2016, https://doi.org/10.12989/sss.2017.19.3.243
  50. Thermal-induced nonlocal vibration characteristics of heterogeneous beams vol.6, pp.2, 2016, https://doi.org/10.12989/amr.2017.6.2.093
  51. Thermal-induced nonlocal vibration characteristics of heterogeneous beams vol.6, pp.2, 2016, https://doi.org/10.12989/amr.2017.6.2.093
  52. Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment vol.5, pp.2, 2016, https://doi.org/10.12989/anr.2017.5.2.069
  53. Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam vol.5, pp.2, 2016, https://doi.org/10.12989/anr.2017.5.2.141
  54. Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams vol.6, pp.2, 2016, https://doi.org/10.12989/csm.2017.6.2.207
  55. Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams vol.6, pp.2, 2016, https://doi.org/10.12989/csm.2017.6.2.207
  56. Vibration analysis of heterogeneous nonlocal beams in thermal environment vol.6, pp.3, 2017, https://doi.org/10.12989/csm.2017.6.3.251
  57. Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.351
  58. Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.281
  59. A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.313
  60. An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS vol.5, pp.4, 2016, https://doi.org/10.12989/anr.2017.5.4.337
  61. Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment vol.20, pp.6, 2016, https://doi.org/10.12989/sss.2017.20.6.709
  62. Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method vol.68, pp.1, 2016, https://doi.org/10.12989/sem.2018.68.1.131
  63. Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.021
  64. Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.057
  65. Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams vol.66, pp.2, 2018, https://doi.org/10.12989/sem.2018.66.2.237
  66. Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205
  67. Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects vol.5, pp.3, 2016, https://doi.org/10.12989/aas.2018.5.3.295
  68. Propagation of elastic waves in thermally affected embedded carbon-nanotube-reinforced composite beams via various shear deformation plate theories vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.495
  69. Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates vol.67, pp.2, 2016, https://doi.org/10.12989/sem.2018.67.2.143
  70. A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects vol.7, pp.4, 2016, https://doi.org/10.12989/csm.2018.7.4.373
  71. Thermal post-buckling analysis of a laminated composite beam vol.67, pp.4, 2018, https://doi.org/10.12989/sem.2018.67.4.337
  72. Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment vol.6, pp.3, 2016, https://doi.org/10.12989/anr.2018.6.3.201
  73. Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2016, https://doi.org/10.12989/anr.2018.6.3.219
  74. On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates vol.7, pp.1, 2016, https://doi.org/10.12989/anr.2019.7.1.063
  75. Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures vol.31, pp.4, 2016, https://doi.org/10.12989/scs.2019.31.4.387
  76. Nonlinear bending and thermal post-buckling behavior of functionally graded piezoelectric nanosize beams using a refined model vol.6, pp.6, 2016, https://doi.org/10.1088/2053-1591/ab0f78
  77. Magneto-electro-elastic node-based smoothed point interpolation method for micromechanical analysis of natural frequencies of nanobeams vol.230, pp.10, 2019, https://doi.org/10.1007/s00707-019-02489-6
  78. Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams vol.7, pp.6, 2019, https://doi.org/10.12989/anr.2019.7.6.391
  79. Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT vol.7, pp.6, 2016, https://doi.org/10.12989/anr.2019.7.6.405
  80. Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory vol.8, pp.3, 2016, https://doi.org/10.12989/anr.2020.8.3.191
  81. Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading vol.8, pp.3, 2016, https://doi.org/10.12989/anr.2020.8.3.203
  82. Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory vol.8, pp.4, 2020, https://doi.org/10.12989/anr.2020.8.4.265
  83. Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field vol.90, pp.9, 2020, https://doi.org/10.1007/s00419-020-01708-0
  84. Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects vol.26, pp.3, 2020, https://doi.org/10.12989/sss.2020.26.3.331
  85. Dynamic analysis of magneto-electro-elastic nanostructures using node-based smoothed radial point interpolation method combined with micromechanics-based asymptotic homogenization technique vol.31, pp.20, 2020, https://doi.org/10.1177/1045389x20935572