References
- Alizada, A.N. and Sofiyev, A.H. (2011a), "Modified Young's moduli of nano-materials taking into account the scale effects and vacancies", Meccanica., 46(5), 915-920. https://doi.org/10.1007/s11012-010-9349-1
- Alizada, A.N. and Sofiyev, A.H. (2011b), "On the mechanics of deformation and stability of the beam with a nanocoating", J. Reinf. Plastic. Comp., 0731684411428382.
- Alizada, A.N., Sofiyev, A.H. and Kuruoglu, N. (2012), "Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load", Acta. Mech., 223(7), 1371-1383. https://doi.org/10.1007/s00707-012-0649-5
- Annigeri, A.R., Ganesan, N. and Swarnamani, S. (2007), "Free vibration behaviour of multiphase and layered magneto-electro-elastic beam", J. Sound. Vib., 299(1), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044
- Ansari, R., Hasrati, E., Gholami, R. and Sadeghi, F. (2015), "Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto-electro-thermo elastic nanobeams", Compos. Part. B. Eng., 83, 226-241. https://doi.org/10.1016/j.compositesb.2015.08.038
- Barati, M.R., Zenkour, A.M. and Shahverdi, H. (2016), "Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory", Compos. Struct., 141(1), 203-212 https://doi.org/10.1016/j.compstruct.2016.01.056
- Chen, W.Q., Lee, K.Y. and Ding, H.J. (2005), "On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates", J. Sound. Vib., 279(1), 237-251. https://doi.org/10.1016/j.jsv.2003.10.033
- Daga, A., Ganesan, N. and Shankar, K. (2009), "Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements", Int. J. Comput. Meth. Eng. Sci. Mech., 10(3), 173-185. https://doi.org/10.1080/15502280902797207
- Ebrahimi, F. and Salari, E. (2015a), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part. B. Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
- Ebrahimi, F. and Salari, E. (2015b), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
- Ebrahimi, F. and Barati, M.R. (2015), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
- Eringen, A.C. and Edelen, D. G. B. (1972a), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Eringen, A.C. (1972b), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Analytical solution for functionally graded magneto-electro-elastic plane beams", Int. J. Eng. Sci., 45(2), 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005
- Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates", Int. J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012
- Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Phys. E., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta. Mech. Sinica., 30(4), 516-525. https://doi.org/10.1007/s10409-014-0072-3
- Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment", Multidis. Model. Mater. Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401
- Li, X.Y., Ding, H.J. and Chen, W.Q. (2008), "Three-dimensional analytical solution for functionally graded magneto-electro-elastic circular plates subjected to uniform load", Compos. Struct., 83(4), 381-390. https://doi.org/10.1016/j.compstruct.2007.05.006
- Li, Y.S., Cai, Z.Y. and Shi, S.Y. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529. https://doi.org/10.1016/j.compstruct.2014.01.033
- Liu, M.F. and Chang, T.P. (2010), "Closed form expression for the vibration problem of a transversely isotropic magneto-electro-elastic plate", J. Appl. Mech., 77(2), 024502. https://doi.org/10.1115/1.3176996
- Mahmoud, S.R., Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A. and Bég, O.A. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425. https://doi.org/10.12989/scs.2015.18.2.425
- Milazzo, A.L.B.E.R.T.O., Orlando, C.A.L.O.G.E.R.O. and Alaimo, A.N.D.R.E.A. (2009), "An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem", Smart. Mater. Struct., 18(8), 085012. https://doi.org/10.1088/0964-1726/18/8/085012
- Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
- Rahmani, O. and Jandaghian, A.A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A., 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
- Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Sladek, J., Sladek, V., Krahulec, S., Chen, C.S. and Young, D.L. (2015), "Analyses of circular magnetoelectroelastic plates with functionally graded material properties", Mech. Adv. Mater. Struct., 22(6), 479-489. https://doi.org/10.1080/15376494.2013.807448
- Van Run, A.M.J.G., Terrell, D.R. and Scholing, J.H. (1974), "An in situ grown eutectic magnetoelectric composite material", J. Mater. Sci., 9(10), 1710-1714. https://doi.org/10.1007/BF00540771
- Wu, B., Zhang, C., Chen, W. and Zhang, C. (2015), "Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates", Smart. Mater. Struct., 24(9), 095017. https://doi.org/10.1088/0964-1726/24/9/095017
- Wu, C.P. and Tsai, Y.H. (2007), "Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux", Int. J. Eng. Sci., 45(9), 744-769. https://doi.org/10.1016/j.ijengsci.2007.05.002
- Xin, L. and Hu, Z. (2015), "Free vibration of simply supported and multilayered magneto-electro-elastic plates", Compos. Struct., 121, 344-350. https://doi.org/10.1016/j.compstruct.2014.11.030
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
Cited by
- Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0465-1
- Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0511-z
- Size-dependent thermally affected wave propagation analysis in nonlocal strain gradient functionally graded nanoplates via a quasi-3D plate theory vol.232, pp.1, 2018, https://doi.org/10.1177/0954406216674243
- Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0368-1
- Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory vol.132, pp.1, 2017, https://doi.org/10.1140/epjp/i2017-11320-5
- Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams vol.132, pp.4, 2017, https://doi.org/10.1140/epjp/i2017-11366-3
- Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations vol.119, 2017, https://doi.org/10.1016/j.tws.2017.04.002
- Enhancement of quasi-static strain energy harvesters using non-uniform cross-section post-buckled beams vol.26, pp.8, 2017, https://doi.org/10.1088/1361-665X/aa746e
- A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.058
- Dynamic modeling of smart shear-deformable heterogeneous piezoelectric nanobeams resting on Winkler–Pasternak foundation vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0466-0
- Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory vol.25, pp.4, 2018, https://doi.org/10.1080/15376494.2016.1255830
- A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams vol.4, pp.4, 2016, https://doi.org/10.12989/anr.2016.4.4.251
- Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams vol.40, pp.5, 2017, https://doi.org/10.1080/01495739.2016.1230483
- Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory vol.185, 2018, https://doi.org/10.1016/j.compstruct.2017.10.021
- Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.279
- Static stability analysis of embedded flexoelectric nanoplates considering surface effects vol.123, pp.10, 2017, https://doi.org/10.1007/s00339-017-1265-y
- Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams vol.131, pp.9, 2016, https://doi.org/10.1140/epjp/i2016-16346-5
- Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0441-9
- Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate vol.131, pp.12, 2016, https://doi.org/10.1140/epjp/i2016-16433-7
- Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams 2018, https://doi.org/10.1080/15376494.2017.1329468
- Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects vol.228, pp.3, 2017, https://doi.org/10.1007/s00707-016-1755-6
- Electro-magnetic effects on nonlocal dynamic behavior of embedded piezoelectric nanoscale beams vol.28, pp.15, 2017, https://doi.org/10.1177/1045389X16682850
- Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects 2018, https://doi.org/10.1080/17455030.2017.1337281
- Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates vol.39, pp.6, 2017, https://doi.org/10.1007/s40430-016-0646-z
- Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.245
- On nonlocal characteristics of curved inhomogeneous Euler–Bernoulli nanobeams under different temperature distributions vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0399-7
- Effect of three-parameter viscoelastic medium on vibration behavior of temperature-dependent non-homogeneous viscoelastic nanobeams in a hygro-thermal environment vol.25, pp.5, 2018, https://doi.org/10.1080/15376494.2016.1255831
- Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field vol.28, pp.11, 2017, https://doi.org/10.1177/1045389X16672569
- Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams vol.131, pp.11, 2016, https://doi.org/10.1140/epjp/i2016-16383-0
- Vibration analysis of embedded biaxially loaded magneto-electrically actuated inhomogeneous nanoscale plates 2017, https://doi.org/10.1177/1077546317708105
- Investigating physical field effects on the size-dependent dynamic behavior of inhomogeneous nanoscale plates vol.132, pp.2, 2017, https://doi.org/10.1140/epjp/i2017-11357-4
- Dynamic Modeling of Magneto-electrically Actuated Compositionally Graded Nanosize Plates Lying on Elastic Foundation vol.42, pp.5, 2017, https://doi.org/10.1007/s13369-017-2413-6
- Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.092
- Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory vol.24, pp.2, 2018, https://doi.org/10.1007/s00542-017-3492-8
- Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory 2017, https://doi.org/10.1080/15376494.2017.1329467
- Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory 2017, https://doi.org/10.1177/1077546317711537
- Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory vol.25, pp.10, 2016, https://doi.org/10.1088/0964-1726/25/10/105014
- Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory vol.166, 2017, https://doi.org/10.1016/j.compstruct.2017.01.036
- Magnetic field effects on nonlocal wave dispersion characteristics of size-dependent nanobeams vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0646-y
- Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates vol.132, pp.4, 2017, https://doi.org/10.1140/epjp/i2017-11400-6
- Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments vol.25, pp.5, 2018, https://doi.org/10.1080/15376494.2017.1285453
- Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams vol.93, 2017, https://doi.org/10.1016/j.ymssp.2017.02.021
- On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory vol.162, 2017, https://doi.org/10.1016/j.compstruct.2016.11.058
- Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-Pasternak foundation vol.24, pp.10, 2018, https://doi.org/10.1177/1077546316678511
- Modelling of thermally affected elastic wave propagation within rotating Mori–Tanaka-based heterogeneous nanostructures vol.24, pp.6, 2018, https://doi.org/10.1007/s00542-018-3800-y
- Dynamic modeling of embedded curved nanobeams incorporating surface effects vol.5, pp.3, 2016, https://doi.org/10.12989/csm.2016.5.3.255
- Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory vol.61, pp.6, 2016, https://doi.org/10.12989/sem.2017.61.6.721
- A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
- Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions vol.19, pp.3, 2016, https://doi.org/10.12989/sss.2017.19.3.243
- Thermal-induced nonlocal vibration characteristics of heterogeneous beams vol.6, pp.2, 2016, https://doi.org/10.12989/amr.2017.6.2.093
- Thermal-induced nonlocal vibration characteristics of heterogeneous beams vol.6, pp.2, 2016, https://doi.org/10.12989/amr.2017.6.2.093
- Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment vol.5, pp.2, 2016, https://doi.org/10.12989/anr.2017.5.2.069
- Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam vol.5, pp.2, 2016, https://doi.org/10.12989/anr.2017.5.2.141
- Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams vol.6, pp.2, 2016, https://doi.org/10.12989/csm.2017.6.2.207
- Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams vol.6, pp.2, 2016, https://doi.org/10.12989/csm.2017.6.2.207
- Vibration analysis of heterogeneous nonlocal beams in thermal environment vol.6, pp.3, 2017, https://doi.org/10.12989/csm.2017.6.3.251
- Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.351
- Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.281
- A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.313
- An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS vol.5, pp.4, 2016, https://doi.org/10.12989/anr.2017.5.4.337
- Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment vol.20, pp.6, 2016, https://doi.org/10.12989/sss.2017.20.6.709
- Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method vol.68, pp.1, 2016, https://doi.org/10.12989/sem.2018.68.1.131
- Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.021
- Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.057
- Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams vol.66, pp.2, 2018, https://doi.org/10.12989/sem.2018.66.2.237
- Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205
- Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects vol.5, pp.3, 2016, https://doi.org/10.12989/aas.2018.5.3.295
- Propagation of elastic waves in thermally affected embedded carbon-nanotube-reinforced composite beams via various shear deformation plate theories vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.495
- Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates vol.67, pp.2, 2016, https://doi.org/10.12989/sem.2018.67.2.143
- A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects vol.7, pp.4, 2016, https://doi.org/10.12989/csm.2018.7.4.373
- Thermal post-buckling analysis of a laminated composite beam vol.67, pp.4, 2018, https://doi.org/10.12989/sem.2018.67.4.337
- Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment vol.6, pp.3, 2016, https://doi.org/10.12989/anr.2018.6.3.201
- Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2016, https://doi.org/10.12989/anr.2018.6.3.219
- On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates vol.7, pp.1, 2016, https://doi.org/10.12989/anr.2019.7.1.063
- Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures vol.31, pp.4, 2016, https://doi.org/10.12989/scs.2019.31.4.387
- Nonlinear bending and thermal post-buckling behavior of functionally graded piezoelectric nanosize beams using a refined model vol.6, pp.6, 2016, https://doi.org/10.1088/2053-1591/ab0f78
- Magneto-electro-elastic node-based smoothed point interpolation method for micromechanical analysis of natural frequencies of nanobeams vol.230, pp.10, 2019, https://doi.org/10.1007/s00707-019-02489-6
- Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams vol.7, pp.6, 2019, https://doi.org/10.12989/anr.2019.7.6.391
- Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT vol.7, pp.6, 2016, https://doi.org/10.12989/anr.2019.7.6.405
- Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory vol.8, pp.3, 2016, https://doi.org/10.12989/anr.2020.8.3.191
- Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading vol.8, pp.3, 2016, https://doi.org/10.12989/anr.2020.8.3.203
- Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory vol.8, pp.4, 2020, https://doi.org/10.12989/anr.2020.8.4.265
- Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field vol.90, pp.9, 2020, https://doi.org/10.1007/s00419-020-01708-0
- Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects vol.26, pp.3, 2020, https://doi.org/10.12989/sss.2020.26.3.331
- Dynamic analysis of magneto-electro-elastic nanostructures using node-based smoothed radial point interpolation method combined with micromechanics-based asymptotic homogenization technique vol.31, pp.20, 2020, https://doi.org/10.1177/1045389x20935572