References
- Evgenidou EN, Konstantinou IK, Lambropoulou DA. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review. Sci. Total Environ. 2015;505:905-926. https://doi.org/10.1016/j.scitotenv.2014.10.021
-
Jiang L, Liu Y, Zeng G, et al. Removal of
$17{\beta}$ -estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chem. Eng. J. 2016;284:93-102. https://doi.org/10.1016/j.cej.2015.08.139 -
Bai X, Casey FXM, Hakk H, DeSutter TM, Oduor PG, Khan E. Sorption and degradation of
$17{\beta}$ -estradiol-17-sulfate in sterilized soil-water systems. Chemosphere 2015;119:1322-1328. https://doi.org/10.1016/j.chemosphere.2014.02.016 -
Lee JH, Zhou JL, Kim SD. Effects of biodegradation and sorption by humic acid on the estrogenicity of
$17{\beta}$ -estradiol. Chemosphere 2011;85:1383-1389. https://doi.org/10.1016/j.chemosphere.2011.08.003 - Hanselman TA, Graetz DA, Wilkie AC. Manure-borne estrogens as potential environmental contaminants: a review. Environ. Sci. Technol. 2003;37:5471-5478. https://doi.org/10.1021/es034410+
-
Mashtare ML, Khan B, Lee LS. Evaluating stereoselective sorption by soils of
$17{\alpha}$ -estradiol and$17{\beta}$ -estradiol. Chemosphere 2011;82:847-852. https://doi.org/10.1016/j.chemosphere.2010.11.021 - Hansen PD, Dizer H, Hock B, et al. Vitellogenin- a biomarker for endocrine disruptors. Trac. Trend. Anal. Chem. 1998;17: 448-451. https://doi.org/10.1016/S0165-9936(98)00020-X
- Metcalfe CD, Metcalfe TL, Kiparissis Y, et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ. Toxicol. Chem. 2001;20:297-308. https://doi.org/10.1002/etc.5620200210
-
Zhang Y, Zhou JL. Removal of estrone and
$17{\beta}$ -estradiol from water by adsorption. Wat. Res. 2005;39:3991-4003. https://doi.org/10.1016/j.watres.2005.07.019 - Sangster JL, Oke H, Zhang Y, Bartelt-Hunt SL. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment. J. Hazard. Mater. 2015;299:112-121. https://doi.org/10.1016/j.jhazmat.2015.05.046
-
Patel S, Han J, Gao W. Sorption of
$17{\beta}$ -estradiol from aqueous solutions on to bone char derived from waste cattle bones: Kinetics and isotherms. J. Environ. Chem. Eng. 2015;3:1562-1569. https://doi.org/10.1016/j.jece.2015.04.027 -
Yoon Y, Westerhoff P, Snyder SA, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A,
$17{\beta}$ -estradiol, and$17{\alpha}$ -ethynyl estradiol on powdered activated carbon. Wat. Res. 2003;37:3530-3537. https://doi.org/10.1016/S0043-1354(03)00239-2 -
Zaib Q, Khan IA, Saleh NB, Flora JRV, Park YG, Yoon Y. Removal of bisphenol A and
$17{\beta}$ -estradiol by single-walled carbon nanotubes in aqueous solution: adsorption and molecular modeling. Wat. Air Soil Pollut. 2012;223:281-3293. -
Sun W, Zhou K. Adsorption of
$17{\beta}$ -estradiol by multi-walled carbon nanotubes in natural waters with or without aquatic colloids. Chem. Eng. J. 2014;258:185-193. https://doi.org/10.1016/j.cej.2014.07.087 -
McCallum EA, Hyung H, Do TA, Huang CH, Kim JH. Adsorption, desorption, and steady-state removal of
$17{\beta}$ -estradiol by nanofiltration membranes. J. Membr. Sci. 2008;319:38-43. https://doi.org/10.1016/j.memsci.2008.03.014 -
Le Noir M, Lepeuple AS, Guieysse B, Mattiasson B. Selective removal of
$17{\beta}$ -estradiol at trace concentration using a molecularly imprinted polymer. Wat. Res. 2007;41:2825-2831. https://doi.org/10.1016/j.watres.2007.03.023 - Lee SM, Tiwari D. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Appl. Clay Sci. 2012;59-60:84-102. https://doi.org/10.1016/j.clay.2012.02.006
- Thanhmingliana, Lee SM, Tiwari D, Prasad SK. Efficient attenuation of 17a-ethynylestradiol (EE2) and tetracycline using novel hybrid materials: batch and column reactor studies. RSC Adv. 2015;5:46834-46842. https://doi.org/10.1039/C4RA17197G
- ISRIC, Procedures for soil analysis [Internet]. Reeuwijk: ISRIC; c2002. Available from: http://www.isric.org/isric/webdocs/docs/ISRIC_TechPap09_2002.pdf (2002).
- EPA, 1986. Method 9080, Cation-exchange capacity of soils (ammonium acetate) [Internet]. Available from: www3.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/9080.pdf.
- Thanhmingliana, Tiwari D. Efficient use of hybrid materials in the remediation of aquatic environment contaminated with micro-pollutant diclofenac sodium. Chem. Eng. J. 2015;263:364-373. https://doi.org/10.1016/j.cej.2014.10.102
- Thanhmingliana, Lee SM, Tiwari D. Use of hybrid materials in the decontamination of bisphenol A from aqueous solutions. RSC Adv. 2014;4:43921-43930.
- Thomas HC. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 1944;66:1664-1666. https://doi.org/10.1021/ja01238a017
- Park Y, Ayoko GA, Kurdi R, Horvath E, Kristóf J, Frost RL. Adsorption of phenolic compounds by organoclays: Implications for the removal of organic pollutants from aqueous media. J. Colloid Interf. Sci. 2013;406:196-208. https://doi.org/10.1016/j.jcis.2013.05.027
- Lalhmunsiama, Gupta PL, Pawar RR, Lee SM. Use of algal biomass in the remediation of aqueous waste contaminated with cadmium. Sci. Technol. J. 2015;3:14-20.
-
Joseph L, Zaib Q, Khan IA, et al. Removal of bisphenol A and
$17{\alpha}$ -ethinylestradiol from landfill leachate using single-walled carbon nanotubes. Wat. Res. 2011;45:4056-4068. https://doi.org/10.1016/j.watres.2011.05.015 - Lalhmunsiama, Tiwari D, Lee SM. Activated carbon and manganese coated activated carbon precursor to dead biomass in the remediation of arsenic contaminated water. Environ. Eng. Res. 2012;17:S41-S48. https://doi.org/10.4491/eer.2012.17.1.041
- Azizian S. Kinetic models of sorption: a theoretical analysis. J. Colloid Interf. Sci. 2004;276:47-52. https://doi.org/10.1016/j.jcis.2004.03.048
- Ho YS, McKay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Proc. Saf. Environ. Protect. 1998;76:332-340. https://doi.org/10.1205/095758298529696
- Haerifar M, Azizian S. An exponential kinetic model for adsorption at solid/solution interface. Chem. Eng. J. 2013;215-216:65-71. https://doi.org/10.1016/j.cej.2012.11.017
- Tiwari D, Laldawngliana C, Lee SM. Immobilized small sized manganese dioxide sand in the remediation of arsenic contaminated water. Environ. Eng. Res. 2014;19:107-113. https://doi.org/10.4491/eer.2014.19.1.107
Cited by
- Breakthrough modeling of furfural sorption behavior in a bagasse fly ash packed bed vol.25, pp.1, 2020, https://doi.org/10.4491/eer.2018.407
- Removal of Estrone, 17β-Estradiol, and 17α-Ethinylestradiol from Water by Adsorption onto Chemically Modified Activated Carbon Cloths vol.21, pp.10, 2016, https://doi.org/10.1007/s12221-020-9758-2
- Synthesis and characterization of Ag0(NPs)/TiO2 nanocomposite: insight studies of triclosan removal from aqueous solutions vol.41, pp.26, 2016, https://doi.org/10.1080/09593330.2019.1615127
- Adsorption of Estradiol by Natural Clays and Daphnia magna as Biological Filter in an Aqueous Mixture with Emerging Contaminants vol.2, pp.3, 2021, https://doi.org/10.3390/eng2030020