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BOUNDS ON THE HYPER-ZAGREB INDEX

FARZANEH FALAHATI-NEZHAD AND MAHDIEH AZARI∗

Abstract. The hyper-Zagreb index HM(G) of a simple graph G is defined
as the sum of the terms (du+dv)2 over all edges uv of G, where du denotes
the degree of the vertex u of G. In this paper, we present several upper

and lower bounds on the hyper-Zagreb index in terms of some molecular
structural parameters and relate this index to various well-known molecular
descriptors.
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1. Introduction

Let G be a finite simple connected graph with vertex set V (G) and edge set
E(G). We denote by du the degree of the vertex u of G. A vertex u is said to
be pendent if du = 1. We denote by δ and ∆ the minimal and maximal vertex
degrees of G, respectively. The distance dG(u, v) between the vertices u and
v of G is defined as the length of any shortest path in G connecting u and v.
The eccentricity εu of a vertex u is the largest distance between u and any other
vertex of G. For positive integers s ̸= t, a graph G is said to be (s, t)-semiregular
if its vertex degrees assume only the values s and t, and if there is at least one
vertex of degree s and at least one of degree t. A bipartite graph is said to be
(s, t)-semiregular bipartite or (s, t)-biregular if any vertex in one side of the given
bipartition has degree s and any vertex in the other side of the bipartition has
degree t.

A molecular descriptor (also known as topological index or graph invariant)
is any function on a graph that does not depend on a labeling of its vertices.
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In organic chemistry, topological indices have been found to be useful in chem-
ical documentation, isomer discrimination, quantitative structure-property re-
lationships (QSPR), quantitative structure-activity relationships (QSAR), and
pharmaceutical drug design [5, 12].

The Zagreb indices are among the oldest topological indices, and were intro-
duced by Gutman and Trinajstić [13] in 1972. These indices have since been used
to study molecular complexity, chirality, ZE–isomerism, and hetero–systems.
The first and second Zagreb indices of G are denoted by M1(G) and M2(G),
respectively, and defined as

M1(G) =
∑

u∈V (G)

du
2 and M2(G) =

∑
uv∈E(G)

dudv.

The first Zagreb index can also be expressed as a sum over edges of G,

M1(G) =
∑

uv∈E(G)

(du + dv).

A multiplicative version of the first Zagreb index called multiplicative sum
Zagreb index was proposed by Eliasi et al. [7] in 2010. The multiplicative sum
Zagreb index Π∗

1(G) of G is defined as

Π∗
1(G) =

∏
uv∈E(G)

(du + dv).

In 1975, Milan Randić [16] proposed a structural descriptor, based on the
end-vertex degrees of edges in a graph, called the branching index that later
became the well-known Randić connectivity index. The Randić index R(G) of
G is defined as

R(G) =
∑

uv∈E(G)

1√
dudv

.

The Randić index is one of the most successful molecular descriptors in QSPR
and QSAR studies, suitable for measuring the extent of branching of the carbon-
atom skeleton of saturated hydrocarbons.

Another variant of the Randić connectivity index named the harmonic index
was introduced by Fajtlowicz [8] in 1987. The harmonic index H(G) of G is
defined as

H(G) =
∑

uv∈E(G)

2

du+dv
.

Motivated by definition of the Randić connectivity index, Vukičević and Fur-
tula [20] proposed another vertex-degree-based topological index, named the
geometric-arithmetic index. The geometric-arithmetic index of a graph G is
denoted by GA(G) and defined as

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.
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The eccentric connectivity index was introduced by Sharma et al. [17] in 1997.
The eccentric connectivity index ξc(G) of G is defined as

ξc(G) =
∑

uv∈E(G)

duεu.

The eccentric connectivity index can also be expressed as a sum over edges of
G,

ξc(G) =
∑

uv∈E(G)

(εu + εv).

The Zagreb eccentricity indices were introduced by Vukičević and Graovac
[21] in 2010. These indices are defined in analogy with the Zagreb indices by
replacing the vertex degrees with the vertex eccentricities. Thus, the first and
second Zagreb eccentricity indices of G are defined as

ξ1(G) =
∑

uv∈E(G)

εu
2 and ξ2(G) =

∑
uv∈E(G)

εuεv.

Recently, Shirdel et al. [18] introduced a variant of the first Zagreb index
called hyper-Zagreb index. The hyper-Zagreb index of G is denoted by HM(G)
and defined as

HM(G) =
∑

uv∈E(G)

(du + dv)
2
.

In this paper, we present several upper and lower bounds on the hyper-Zagreb
index in terms of some graph parameters such as the order, size, number of pen-
dant vertices, minimal and maximal vertex degrees, and minimal non-pendent
vertex degree, and relate this index to various well-known graph invariants such
as the first and second Zagreb indices, multiplicative sum Zagreb index, Randić
index, harmonic index, geometric-arithmetic index, eccentric connectivity in-
dex, and second Zagreb connectivity index. We refer the reader to consult
[1, 2, 3, 6, 9, 10, 11, 19] for more information on computing bounds on vertex-
degree-based topological indices.

2. Preliminaries

In this section, we recall some well-known inequalities which will be used
throughout the paper.

Let x1, x2, . . . , xn be positive real numbers.
The arithmetic mean of x1, x2, . . . , xn is equal to

AM (x1, x2, . . . , xn) =
x1 + x2 + · · ·+ xn

n
.

The geometric mean of x1, x2, . . . , xn is equal to

GM (x1, x2, . . . , xn) = n
√
x1x2 . . . xn.
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The harmonic mean of x1, x2, . . . , xn is equal to

HM (x1, x2, . . . , xn) =
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

.

Related to these three means, we have the following well-known inequalities.

Lemma 2.1 (AM-GM-HM inequality). Let x1, x2, . . . , xn be positive real num-
bers. Then

AM (x1, x2, . . . , xn) ≥ GM (x1, x2, . . . , xn) ≥ HM (x1, x2, . . . , xn) ,

with equality if and only if x1 = x2 = . . .= xn.

Lemma 2.2 (Cauchy-Schwarz inequality). Let X = (x1, x2, . . . , xn) and Y =
(y1, y2, . . . , yn) be two sequences of real numbers. Then( n∑

i=1

xiyi

)2
≤

n∑
i=1

xi
2

n∑
i=1

yi
2,

with equality if and only if the sequences X and Y are proportional, i.e., there
exists a constant c such that xi = cyi, for each 1 ≤ i ≤ n.

As a special case of the Cauchy-Schwarz inequality, when y1 = y2 = · · · = yn,
we get the following result.

Corollary 2.3. Let x1, x2, . . . , xn be real numbers. Then( n∑
i=1

xi

)2
≤ n

n∑
i=1

xi
2,

with equality if and only if x1 = x2 = · · · = xn.

Lemma 2.4 (Pólya-Szegö inequality [15]). Let 0 < m1 ≤ xi ≤ M1 and 0 <
m2 ≤ yi ≤ M2, for 1 ≤ i ≤ n. Then

n∑
i=1

xi
2

n∑
i=1

yi
2 ≤ 1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
i=1

xiyi

)2
.

Lemma 2.5 (Diaz-Metcalf inequality [4]). Let x1, x2, . . . , xn, y1, y2, . . . , yn be
real numbers such that pxi ≤ yi ≤ Pxi, for 1 ≤ i ≤ n. Then

n∑
i=1

yi
2 + pP

n∑
i=1

xi
2 ≤ (p+ P )

n∑
i=1

xiyi,

with equality if and only if yi = Pxi or yi = pxi, for 1 ≤ i ≤ n.

Lemma 2.6 ([14]). Let G be a nontrivial connected graph of order n. For each
vertex u ∈ V (G),

εu ≤ n− du,

with equality if and only if G∼= P 4 or G ∼= Kn − iK2, 0 ≤ i ≤
⌊
n
2

⌋
, where P4

denotes the path on 4 vertices and Kn − iK2 denotes the graph obtained from
the complete graph Kn by removing i independent edges.
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3. Results and discussion

In this section, we present several upper and lower bounds on the hyper-
Zagreb index in terms of some graph parameters and various molecular descrip-
tors.

Throughout this section, we assume that G is a nontrivial simple connected
graph with order n and size m. Note that, the connectivity of G is not an
important restriction, since if G has connected components G1, G2, . . . , Gr, then
HM(G) =

∑r
i=1 HM(Gi). Furthermore, every molecular graph is connected.

Theorem 3.1. For any graph G,

4mδ2 ≤ HM(G) ≤ 4m∆2,

with equality if and only if G is a regular graph.

Proof. Since 2δ ≤ du + dv ≤ 2∆, for each uv ∈ E(G), we have

4mδ2 =
∑

uv∈E(G)

(2δ)
2 ≤ HM(G) =

∑
uv∈E(G)

(du + dv)
2 ≤

∑
uv∈E(G)

(2∆)
2
= 4m∆2.

The equalities hold if and only if du + dv = 2∆ = 2δ, for each uv ∈ E(G),
which implies that G is a regular graph. �

Theorem 3.2. For any graph G with p pendant vertices and minimal non-
pendent vertex degree δ1,

4δ1
2 (m− p) + (1 + δ1)

2
p ≤ HM(G) ≤ 4∆2 (m− p) + (1 + ∆)

2
p,

with equality if and only if G is regular or (1,∆)-semiregular.

Proof. From the definition of the hyper-Zagreb index,

HM(G) =
∑

uv∈E(G)
du,dv ̸=1

(du + dv)
2
+

∑
uv∈E(G)

du=1

(1 + dv)
2

≤
∑

uv∈E(G)
du,dv ̸=1

(2∆)
2
+

∑
uv∈E(G)

du=1

(1 + ∆)
2

=4∆2 (m− p) + (1 + ∆)
2
p.

Similarly,

HM(G) ≥
∑

uv∈E(G)
du,dv ̸=1

(2δ1)
2
+

∑
uv∈E(G)

du=1

(1 + δ1)
2
= 4δ1

2 (m− p) + (1 + δ1)
2
p.

The above equalities hold if and only if du = dv = ∆ = δ1, for each uv ∈ E(G),
with du, dv ̸= 1, and dv = ∆ = δ1, for each uv ∈ E(G), with du = 1. This implies
that, G is (1,∆)-semiregular if p > 0, and G is regular if p = 0. �
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Theorem 3.3. Let G be a tree. Then

HM(G) ≤ n2(n− 1),

with equality if and only if G is a star graph.

Proof. Since du + dv ≤ n, for each uv ∈ E (G), we have

HM(G) =
∑

uv∈E(G)

(du + dv)
2 ≤

∑
uv∈E(G)

n2 = n2m = n2(n− 1),

with equality if and only if du + dv = n, for each uv ∈ E(G), which implies that
G is a star graph. �

Theorem 3.4. For any graph G,

HM(G) ≥ M1(G)
2

m
,

with equality if and only if G is regular or biregular.

Proof. By Corollary 2.3, we obtain

HM(G) =
∑

uv∈E(G)

(du + dv)
2 ≥

(∑
uv∈E(G) (du + dv)

)2
m

=
M1(G)

2

m
.

The equality holds if and only if there exists a constant c such that du+dv = c,
for each uv ∈ E(G). If uv, uz ∈ E(G), then du + dv = du + dz, which implies
that dv = dz. Consequently, for each u ∈ V (G), every neighbor of u has the
same degree. Since G is connected, this holds if and only if G is regular or
biregular. �

Theorem 3.5. For any graph G,

HM(G) ≤ (δ +∆)
2

4mδ∆
M1(G)

2
.

Proof. Using the fact that, 2δ ≤ du + dv ≤ 2∆, for each uv ∈ E(G), and setting
m1 = 2δ, xi = du+dv, 1 ≤ i ≤ m, M1 = 2∆, and m2 = yi = M2 = 1, 1 ≤ i ≤ m,
in Pólya-Szegö inequality, we obtain

∑
uv∈E(G)

(du + dv)
2
∑

uv∈E(G)

12 ≤ 1

4

(√
2∆

2δ
+

√
2δ

2∆

)2( ∑
uv∈E(G)

(du + dv)
)2

,

which is easily simplified into

HM(G) ≤ 1

4m

(√
∆

δ
+

√
δ

∆

)2

M1(G)
2
=

(δ +∆)
2

4mδ∆
M1(G)

2
.

�
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Theorem 3.6. For any graph G,

HM(G) ≤ 2 (δ +∆)M1(G)− 4mδ∆,

with equality if and only if G is a regular graph.

Proof. By setting p = 2δ, P = 2∆, xi = 1, and yi = du + dv, 1 ≤ i ≤ m, in
Diaz-Metcalf inequality, we obtain∑

uv∈E(G)

(du + dv)
2
+ 4δ∆

∑
uv∈E(G)

12 ≤ 2 (δ +∆)
∑

uv∈E(G)

(du + dv),

which is easily simplified into

HM(G) ≤ 2 (δ +∆)M1(G)− 4mδ∆.

By Lemma 2.5, the equality holds if and only if du+dv = 2δ or du+dv = 2∆,
for each uv ∈ E(G), which implies that G is a regular graph. �

Theorem 3.7. For any graph G,

HM(G) ≥ 4M2(G),

with equality if and only if G is a regular graph.

Proof. Using the AM-GM inequality, we get

HM(G) =
∑

uv∈E(G)

(du + dv)
2 ≥

∑
uv∈E(G)

(
2
√
dudv

)2
= 4M2(G).

By Lemma 2.1, the equality holds if and only if du = dv, for each uv ∈ E (G),
which implies that G is a regular graph. �

Theorem 3.8. For any graph G,

δM1(G) + 2M2(G) ≤ HM(G) ≤ ∆M1(G) + 2M2(G),

with equality if and only if G is a regular graph.

Proof. Using the definitions of the hyper-Zagreb and Zagreb indices, we have

HM(G) =
∑

uv∈E(G)

(du + dv)
2
=

∑
uv∈E(G)

(
du

2 + dv
2
)
+

∑
uv∈E(G)

2dudv

=
∑

u∈V (G)

du.du
2 + 2M2(G).

Now using the fact that, δ ≤ du ≤ ∆, for each u ∈ V (G), we obtain

δM1(G) + 2M2(G) ≤ HM(G) ≤ ∆M1(G) + 2M2(G).

The equalities hold if and only if du = ∆ = δ, for each u ∈ V (G), which
implies that G is a regular graph. �
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Theorem 3.9. For any graph G,

HM(G) ≥ m
m

√
Π∗

1 (G)
2
,

with equality if and only if G is regular or biregular.

Proof. Using the AM-GM inequality, we get

HM (G) =
∑

uv∈E(G)

(du + dv)
2 ≥ m m

√ ∏
uv∈E(G)

(du + dv)
2
= m

m

√
Π∗

1 (G)
2
.

By Lemma 2.1, the equality holds if and only if there exists a constant c such
that (du + dv)

2
= c, for each uv ∈ E(G). This implies that, du + dv =

√
c, for

each uv ∈ E(G). As explained in the proof of Theorem 3.4, this holds if and
only if G is regular or biregular. �
Theorem 3.10. For any graph G,

4δ3R(G) ≤ HM(G) ≤ 4∆3R(G),

with equality if and only if G is a regular graph.

Proof. It is easy to see that, for each uv ∈ E(G),

4δ3 = (2δ)
2
√
δ2 ≤ (du + dv)

2
√
dudv ≤ (2∆)

2
√
∆2 = 4∆3.

Now, from the definition of the hyper-Zagreb index,

4δ3R(G) ≤ HM(G) =
∑

uv∈E(G)

(du + dv)
2

√
dudv√
dudv

≤ 4∆3R(G).

The equalities hold if and only if du = dv = δ = ∆, for each uv ∈ E(G),
which implies that G is a regular graph. �
Theorem 3.11. For any graph G,

HM (G) ≥ 4m3

R(G)
2 ,

with equality if and only if G is a regular graph.

Proof. Using the AM-HM inequality, AM-GM inequality, and Corollary 2.3, re-
spectively, we obtain( m

R(G)

)2
=
( m∑

uv∈E(G)
1√
dudv

)2
≤
(∑

uv∈E(G)

√
dudv

m

)2

≤ 1

m2

( ∑
uv∈E(G)

du + dv
2

)2
≤ m

m2

∑
uv∈E(G)

(du + dv
2

)2
=

1

4m
HM(G).

By Lemma 2.1, the above first equality holds if and only if there exists a
constant c such that

√
dudv = c, for each uv ∈ E(G). If uv, uz ∈ E(G), then√

dudv =
√
dudz, which implies that dv = dz. Consequently, for each vertex
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u ∈ V (G), every neighbor of u has the same degree. This holds if and only if
G is regular or biregular. By Lemma 2.1, the second equality holds if and only
if du= dv, for each uv ∈ E(G), which implies that G is a regular graph. By
Corollary 2.3, the third equality holds if and only if there exists a constant c
such that du+dv

2 = c, or equivalently, du + dv = 2c, for each uv ∈ E(G). As
explained in the proof of Theorem 3.4, this holds if and only if G is regular or

biregular. Consequently, HM(G) ≥ 4m3

R(G)2
, with equality if and only if G is a

regular graph. �
Theorem 3.12. For any graph G,

4δ3H(G) ≤ HM(G) ≤ 4∆3H(G),

with equality if and only if G is a regular graph.

Proof. It is easy to see that, for each uv ∈ E(G),

4δ3 =
(2δ)

3

2
≤ (du + dv)

3

2
≤ (2∆)

3

2
= 4∆3.

Now, from the definition of the hyper-Zagreb index,

4δ3H(G) ≤ HM(G) =
∑

uv∈E(G)

2

du + dv
× (du + dv)

3

2
≤ 4∆3H(G).

The equalities hold if and only if du = dv = δ = ∆, for each uv ∈ E(G),
which implies that G is a regular graph. �
Theorem 3.13. For any graph G,

HM(G) ≥ 4δm2

H(G)
,

with equality if and only if G is a regular graph.

Proof. Using the Cauchy-Schwartz inequality, we get

HM(G)H(G) =
∑

uv∈E(G)

(du + dv)
2
∑

uv∈E(G)

2

du + dv

≥
( ∑
uv∈E(G)

(du + dv)

√
2

du + dv

)2
=2
( ∑
uv∈E(G)

√
du + dv

)2
≥ 2
( ∑
uv∈E(G)

√
2δ
)2

= 4δm2.

By Lemma 2.2, the above first equality holds if and only if there exists a

constant c such that du + dv = c
√

2
du+dv

, for each uv ∈ E(G). This implies

that (du + dv)
3
= 2c2, for each uv ∈ E(G). If uv, uz ∈ E(G), then (du + dv)

3
=

(du + dz)
3
, which is then easily simplified into dv = dz. Consequently, for each

vertex u ∈ V (G), every neighbor of u has the same degree. This holds if and only
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if G is regular or biregular. The second equality holds if and only if du = dv = δ,
for each uv ∈ E (G), which implies that G is a regular graph. Consequently,

HM(G) ≥ 4δm2

H(G) , with equality if and only if G is a regular graph. �

Theorem 3.14. For any graph G,

HM(G) ≥ 4δ2

m
(GA(G))

2
,

with equality if and only if G is a regular graph.

Proof. Using the AM-HM inequality and Corollary 2.3, we obtain

HM(G)

4
=

∑
uv∈E(G)

(du + dv
2

)2
≥

∑
uv∈E(G)

( 2
1
du

+ 1
dv

)2
=

∑
uv∈E(G)

( 2dudv
du + dv

)2

≥ 1

m

( ∑
uv∈E(G)

2dudv
du + dv

)2
=

1

m

( ∑
uv∈E(G)

2
√
dudv

du + dv

√
dudv

)2

≥ 1

m

(
δ
∑

uv∈E(G)

2
√
dudv

du + dv

)2
=

δ2

m
(GA(G))

2
.

By Lemma 2.1, the above first equality holds if and only if du= dv, for each
uv ∈ E(G), which implies that G is a regular graph. By Corollary 2.3, the second
equality holds if and only if there exists a constant c such that 2dudv

du+dv
= c, for

each uv ∈ E(G). If uv, uz ∈ E(G), then 2dudv

du+dv
= 2dudz

du+dz
. Then dv(du + dz) =

dz(du + dv), which is easily simplified into dv = dz. So, every neighbor of u has
the same degree, which implies that G is regular or biregular. The third equality
holds if and only if du= dv = δ, for each uv ∈ E(G), which implies that G is a

regular graph. Consequently, HM(G) ≥ 4δ2

m (GA(G))
2
, with equality if and only

if G is a regular graph. �

Theorem 3.15. For any graph G,

HM(G) ≥ 4m2δ
2

GA(G)
,

with equality if and only if G is a regular graph.

Proof. Using the AM-HM inequality, we obtain

m

GA(G)
=

m∑
uv∈E(G)

2
√
dudv

du+dv

≤ 1

m

∑
uv∈E(G)

du + dv

2
√
dudv

=
1

2m

∑
uv∈E(G)

du + dv√
dudv

× du + dv
du + dv

=
1

2m

∑
uv∈E(G)

(du + dv)
2 × 1√

dudv(du + dv)
≤ 1

4mδ2
HM(G).
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By Lemma 2.1, the above first equality holds if and only if there exists a
constant c such that du+dv

2
√
dudv

= c, for each uv ∈ E(G). Using the same argument

as in the previous theorems, this holds if and only if G is regular or biregular.
The second equality holds if and only if du= dv = δ, for each uv ∈ E(G),

which implies that G is a regular graph. Consequently, HM (G) ≥ 4m2δ
2

GA(G) , with

equality if and only if G is a regular graph. �

Theorem 3.16. For any graph G,

HM(G) ≤ 4n2m+ ξ3(G) + 2ξ2(G)− 4nξc(G),

where ξ3(G) =
∑

u∈V (G)

(
εu

2 + εv
2
)
, and the equality holds if and only if G∼= P 4

or G ∼= Kn − iK2, 0 ≤ i ≤
⌊
n
2

⌋
.

Proof. Using the definition of the hyper-Zagreb index and Lemma 2.6, we get

HM(G) =
∑

uv∈E(G)

(du + dv)
2 ≤

∑
uv∈E(G)

(n− εu + n− εv)
2

=
∑

uv∈E(G)

(
4n2 +

(
εu

2 + εv
2
)
+ 2εuεv − 4n(εu + εv)

)
=4n2m+ ξ3 (G) + 2ξ2 (G)− 4nξc (G) .

By Lemma 2.6, the equality holds if and only if du = n−εu, for each u ∈ V (G),
which by Lemma 2.6 implies that, G∼= P 4 or G ∼= Kn − iK2, 0 ≤ i ≤

⌊
n
2

⌋
. �
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