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REMARKS ON CONVERGENCE OF INDUCTIVE MEANS

JISU PARK AND SEJONG KIM∗

Abstract. We define new inductive mean constructed by a mean on a
complete metric space, and see its convergence when the intrinsic mean is
given. We also give many examples of inductive matrix means and claim

that the limit of inductive mean constructed by the intrinsic mean is not
the Karcher mean, in general.
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1. Introduction

Among a variety of applications for positive definite matrices, the process
of averaging has become attractive and widely studied. Since the two-variable
geometric mean of positive definite matrices A and B

A#B = A1/2(A−1/2BA−1/2)1/2A1/2

has been introduced by Kubo and Ando [9], its algebraic and geometric prop-
erties have been studied. On the open convex cone of positive definite matrices
equipped with the Riemannian trace metric d(X,Y ) = ∥ log(X−1/2Y X−1/2)∥2,
the unique geodesic connecting from A to B is given by

t ∈ [0, 1] 7→ A#tB = A1/2(A−1/2BA−1/2)tA1/2.

See [3] for more details. An extensive theory of two-variable geometric mean to
the multivariable geometric mean has sprung up and has remained problematic.
Ando, Li, and Mathias [1] have especially suggested a symmetrization procedure
to the multivariable geometric mean of positive definite matrices including ten
desirable properties for extended geometric means. Moreover, a convergence for
symmetrization procedure has been recently proved by Kim and Petz [8].
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A natural and attractive average of positive definite matrices is the least
squares mean, also called the Cartan mean, Riemannian barycenter, and Karcher
mean. The Karcher mean Λ(ω;A1, . . . , An) of positive definite matricesA1, . . . , An

and a positive probability vector ω = (w1, . . . , wn) is defined as the unique min-
imizer (provided it exists) of the weighted sum of squares of the Riemannian
trace distances to each of the point. That is,

Λ(ω;A1, . . . , An) = argmin
Z∈P

n∑
i=1

wid
2(Z,Ai). (1)

In general, such minimizer exists uniquely on a Hadamard space, which is a com-
plete metric space satisfying the semiparallelogram law. While many interesting
properties of the Karcher mean including Ando-Li-Mathias properties have been
developed, the remarkable one is that the limit of inductive mean given by

T1 = A1, Tk+1 = Tk#λk+1
Ak+1, k ≥ 1,

where λk =
wk∑k
j=1 wj

and k denotes the residual of k mod n, coincides with the

Karcher mean [14].
One can naturally ask what if we replace the original inductive mean by other

geometric means. In this article we consider a new inductive mean constructed
by a given mean generally on a complete metric space. We mainly show that
the limit of the inductive mean constructed by a symmetric and multiplicative
mean is the given mean, and see several examples for positive definite matrices.

2. Convergence of inductive means

Let (X, d) be a complete metric space. Let ω ∈ ∆n, the simplex of positive
probability vectors in Rn convexly spanned by the unit coordinate vectors. A
weighted n-mean Gn onX for n ≥ 2 is a continuous mapGn : ∆n×Xn → X that
is idempotent in the sense that Gn(ω;x, . . . , x) = x for all x ∈ X. A weighted
n-mean Gn is symmetric or permutation invariant if Gn(ωσ;xσ) = Gn(ω;x),
where ωσ = (wσ(1), . . . , wσ(n)) and xσ = (xσ(1), . . . , xσ(n)) for each permutation
σ on {1, . . . , n}. A mean G on X is a sequence of means {Gn}n≥2.

For ω = (w1, . . . , wn) ∈ ∆n and x = (x1, . . . , xn) ∈ Xn, we denote by

ωk =
1

k
(w1, . . . , wn, w1, . . . , wn, . . . , w1, . . . , wn) ∈ ∆nk,

xk = (x1, . . . , xn, x1, . . . , xn, . . . , x1, . . . , xn) ∈ Xnk,

where the number of blocks is k. Also,

ω∞ = (w1, . . . , wn, . . . , w1, . . . , wn, . . . ),

x∞ = (x1, . . . , xn, . . . , x1, . . . , xn, . . . ).

Note that ω∞ is an infinite-dimensional vector, not a probability vector.
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Definition 2.1. Let ω ∈ ∆n. A meanG = {Gn} onX is said to bemultiplicative
if for all n and x ∈ Xn,

Gn(ω;x) = Gnk(ω
k;xk), k ≥ 2.

If G is symmetric and multiplicative, then G is called intrinsic.

Let a = (a1, . . . , am) ∈ Xm and let ω = (w1, . . . , wm) ∈ ∆m. For a mean
G = {Gn}n≥2, we consider the inductive mean defined as

SG
k (ω;a) = Gk(ω

(k);a(k)), k ≥ m, (2)

where k denotes the residual of k mod m, and

ω∞(k) = wk, a∞(k) = ak

ω(k) =
1∑k

i=1 ω
∞(i)

(ω∞(1), . . . , ω∞(k)) ∈ ∆k,

a(k) = (a∞(1), . . . ,a∞(k)) ∈ Xk.

We also denote the multiple of m by m. Note that

SG
m(ω;a) = Gm(ω;a)

SG
m+1(ω;a) = Gm+1

(
1

1 + w1
(ω,w1);a, a1

)
...

SG
2m−1(ω;a) = G2m−1

(
1

2− wm
(ω,w1, . . . , wm−1);a, a1, . . . , am−1

)
SG
2m(ω;a) = G2m(ω2;a2)

...

Proposition 2.2. Let G = {Gn}n≥2 be a symmetric mean satisfying that for
all n, ω = (w1, . . . , wn) ∈ ∆n and x = (x1, . . . , xn) ∈ Xn

SG
n (ω;x) = SG

n−p+1

(
p∑

i=1

wi, wp+1, . . . , wn;x1, xp+1, . . . , xn

)
(3)

if x1 = · · · = xp for 1 ≤ p < n. Then G is the intrinsic mean.

Proof. Let ω = (w1, . . . , wm) ∈ ∆m and x = (x1, . . . , xm) ∈ Xm. It is enough
to show that G is multiplicative. Using the permutation invariance and the
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condition (3) sequentially yield that for k ≥ 2,

Gmk(ω
k;xk)

= Gmk

(
1

k
(w1, . . . , w1, . . . , wm, . . . , wm);x1, . . . , x1, . . . , xm, . . . , xm

)
= Gmk−k+1

(
1

k
(kw1, w2, . . . , w2, . . . , w1, . . . , wm, . . . , wm);x1, x2, . . . , x2, . . . , xm, . . . , xm

)
.
..

= Gm(w1, . . . , wm;x1, . . . , xm).

�

We now see our main result about the convergence of inductive means.

Theorem 2.3. Let G = {Gn}n≥2 be a symmetric mean satisfying the property
(3). Then for any a = (a1, . . . , am) ∈ Xm and ω = (w1, . . . , wm) ∈ ∆m,

lim
k→∞

SG
k (ω(k),a(k)) = Gm(ω;a).

Proof. Let k ∈ N. Then there are p, r ∈ N ∪ {0} such that k = pm + r and
0 ≤ r < m by the division algorithm. By permutation invariance and the
condition (3),

SG
k (ω(k),a(k))

= Gk

(
1

sk
(ω∞(1), . . . , ω∞(k)); a1, . . . , am, . . . , a1, . . . , am, a1, . . . , ar

)
= Gm

(
1

sk
((p+ 1)w1, . . . , (p+ 1)wr, pwr+1, . . . , pwm); a1, . . . , ar, ar+1, . . . , am

)
,

where sk = p+
r∑

i=1

wi. Note that k → ∞ is equivalent to p =
k − r

m
→ ∞. Then

(p+ 1)ws

p+
r∑

i=1

wi

→ ws for s = 1, . . . , r, and
pwt

p+
r∑

i=1

wi

→ wt for t = r + 1, . . . ,m.

Since a mean Gm is continuous, we conclude

lim
k→∞

SG
k (ω(k),a(k)) = Gm(ω;a).

�

3. Multivariable means of positive definite matrices

In this section we see multivariable matrix means on the open convex cone P
of positive definite matrices. Let A = (A1, . . . , An) ∈ Pn and ω = (w1, . . . , wn) ∈
∆n.
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Remark 3.1. The weighted arithmetic mean and weighted harmonic mean

A(ω;A) =
n∑

i=1

wiAi, H(ω;A) =

[
n∑

i=1

wiA
−1
i

]−1

(4)

are the intrinsic means. Moreover, the identity (3) is satisfied for both A and
H, and hence,

lim
k→∞

SA
k (ω(k),A(k)) = A(ω;A), lim

k→∞
SH
k (ω(k),A(k)) = H(ω;A).

Remark 3.2. The resolvent mean for parameter µ ≥ 0 is defined by

R(ω;A) =

[
n∑

i=1

wi(Ai + µI)−1

]−1

− µI. (5)

Bauschke, Moffat, and Wang [2] introduced the resolvent mean whose origin
comes from the proximal average in convex analysis and optimization. Since
then, many scholars have found fascinating properties such as the monotonicity
for parameters and the nonexpansiveness [7, 10].

One can see the resolvent mean alternatively as

R(ω;A) = H(ω;A+ µI)− µI,

where I = (I, . . . , I) ∈ Pn and I is the identity matrix. So it is an intrinsic mean,
and satisfies the equality (3). Therefore,

lim
k→∞

SR
k (ω(k),A(k)) = R(ω;A).

We now review a natural and attractive average, the Karcher mean, among
many geometric means. Also we see some recent results and the connection with
the Log-Euclidean mean.

Remark 3.3. The Karcher mean (or the least squares mean, Riemannian cen-
troid, Cartan barycenter) Λ(ω;A) is defined as the unique minimizer of the
weighted sum of the squares of the Riemannian trace metric δ:

Λ(ω;A) = argmin
X∈P

n∑
i=1

wiδ
2(X,Ai) (6)

where δ(A,B) = ∥ log(A−1/2BA−1/2)∥F and ∥ · ∥F denotes the Frobenius norm.
Using Karcher’s formula in [5] for the gradient of the objective function yields
that the Karcher mean Λ(ω;A) is the unique positive definite solution of the
Karcher equation

n∑
i=1

wi log(X
1/2A−1

i X1/2) = O. (7)

Recently, many interesting properties of the Karcher mean have been widely
studied. It has been shown in [14] that power means Pt(ω;A) defined by the
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unique positive solution of the equation

X =
n∑

i=1

wiX#tAi, t ∈ (0, 1),

converge to the Karcher mean as t → 0+, whereA#tB = A1/2(A−1/2BA−1/2)tA1/2

is the weighted geometric mean of A and B in P. Also, it has been proved in
[6] that certain sequence of the Karcher means converges to the Log-Euclidean
mean:

lim
m→∞

Λ(ω;A
1/m
1 , . . . , A1/m

n ) = exp

(
n∑

i=1

wi logAi

)
. (8)

The following shows the continuity of power means P : (0, 1] × ∆n × Pn →
P, P (t, ω,A) = Pt(ω;A) with respect to the Thompson metric d on P given by

d(A,B) = ∥ log(A−1/2BA−1/2)∥,
where ∥X∥ denotes the operator norm of X.

Lemma 3.1 ([12, Proposition 3.5]). Let ω, µ ∈ ∆n and A,B ∈ Pn. Then for
s, t ∈ (0, 1]

d(Ps(ω;A), Pt(µ;B)) ≤
|s− t|

max{s, t}
∆(A) +

1

max{s, t}
d(ω, µ) + max

1≤i≤n
d(Ai, Bi),

where ∆(A) = max
1≤i,j≤n

{d(Ai, Aj)} denotes the diameter of A = (A1, . . . , An) and

d((s1, . . . , sn), (t1, . . . , tn)) = max
1≤i≤n

∣∣∣∣log si
ti

∣∣∣∣
on Rn

+, where R+ = (0,∞).

Theorem 3.2. Let A = (A1, . . . , An) ∈ Pn and ω = (w1, . . . , wn) ∈ ∆n. Then

lim
k→∞

SΛ
k (ω

(k),A(k)) = Λ(ω;A).

Proof. Let ϵ > 0 be given and let ω, µ ∈ ∆n. By Lemma 3.1, there is δ > 0 such
that d(ω, µ) < δ implies

d(Pt(ω;A), Pt(µ;A)) <
ϵ

3
.

For such ω, µ ∈ ∆n

d(Λ(ω;A), Pt(ω;A)) <
ϵ

3
and d(Λ(µ;A), Pt(µ;A)) <

ϵ

3

for t > 0 small enough, since the power means Pt converges to the Karcher mean
as t → 0 in [12, 14]. By the triangle inequality, we have

d(Λ(ω;A),Λ(µ;A))
≤ d(Λ(ω;A), Pt(ω;A)) + d(Pt(ω;A), Pt(µ;A)) + d(Pt(µ;A),Λ(µ;A))

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.
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Moreover, by Theorem 4.4, (P5) in [12]

d(Λ(ω;A),Λ(ω;B)) ≤ max
1≤i≤n

d(Ai, Bi).

So the Karcher mean Λ : ∆n × Pn → P is continuous, and is a symmetric mean.
Indeed, the Karcher mean satisfies all of the Ando-Li-Mathias properties [11].

Let X = Λ(ω;A). If A1 = · · · = Ak for 1 ≤ k < n, then the Karcher equation
(7) reduces to

O =

(
k∑

i=1

wi

)
log(X1/2A−1

1 X1/2) +
n∑

j=k+1

wj log(X
1/2A−1

j X1/2).

It means that X = Λ

(
k∑

i=1

wi, wk+1, . . . , wn;A1, Ak+1, . . . , An

)
. So by Theorem

2.3 it is proved. �

Proposition 3.3. Let A = (A1, . . . , An) ∈ Pn and ω = (w1, . . . , wn) ∈ ∆n.

Then the double limit lim
k,m→∞

SΛ
k (ω

(k), [A(k)]1/m)m converges, and

lim
k,m→∞

SΛ
k (ω

(k), [A(k)]1/m)m = exp

(
n∑

i=1

wi logAi

)
,

where [A(k)]1/m = (A∞(1)1/m, . . . ,A∞(k)1/m).

Proof. By Theorem 3.2 and the fact that the map A ∈ P 7→ Am is continuous,
we have

lim
k→∞

SΛ
k (ω

(k), [A(k)]1/m)m = Λ(ω;A1/m)m.

By the property (8) we get

lim
m→∞

lim
k→∞

SΛ
k (ω

(k), [A(k)]1/m)m = lim
m→∞

Λ(ω;A1/m)m = exp

(
n∑

i=1

wi logAi

)
.

By the definition of inductive means SΛ
k and the property (8), on the other

hand, we obtain

lim
m→∞

SΛ
k (ω

(k), [A(k)]1/m)m

= lim
m→∞

Λ

(
1

s(k)
((p+ 1)w1, . . . , (p+ 1)wr, pwr+1, . . . , pwn);A

1/m
1 , . . . , A1/m

n

)m

= exp

 r∑
j=1

(p+ 1)wj

s(k)
logAj +

n∑
j=r+1

pwj

s(k)
logAj

 ,
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where s(k) = p +

r∑
i=1

wi and k = pn + r for some p ∈ N and 0 ≤ r < n. Note

that k → ∞ is equivalent to p → ∞, and hence,

lim
k→∞

lim
m→∞

SΛ
k (ω

(k), [A(k)]1/m)m

= lim
p→∞

exp

 r∑
j=1

(p+ 1)wj

s(k)
logAj +

n∑
j=r+1

pwj

s(k)
logAj


= exp

(
n∑

i=1

wi logAi

)
.

�

4. Final Remarks

Hadamard spaces are important examples of complete convex metric spaces
[13, 17]. Here, a complete metric space (M,d) is called a Hadamard space if it
satisfies the semiparallelogram law; for each x, y ∈ M , there exists an m ∈ M
satisfying

d2(m, z) ≤ 1

2
d2(x, z) +

1

2
d2(y, z)− 1

4
d2(x, y) (9)

for all z ∈ M . Such spaces are also called (global) CAT(0)-spaces or NPC
(non-positively curved) spaces. The point m appearing in (9) is the unique
metric midpoint between x and y. The midpoint operation gives rise to a unique
minimal geodesic γx,y : [0, 1] → M for given two points x and y. We denoted
by x#ty := γx,y(t) and call it the weighted geometric mean of x and y. The
typical example of Hadamard space is the open convex cone P of positive definite
matrices with Riemannian trace metric.

On a Hadamard space (M,d), the least squares mean

Λ(ω; a1, . . . , an) = argmin
z∈M

n∑
i=1

wid
2(z, ai) (10)

exists uniquely. Motivated by Strong Law of Large Number on Hadamard spaces
that established by K. Sturm [17], J. Holbrook [4], Y. Lim and M. Palfia [15]
found a deterministic approximation to the least squares mean mean: For a =
(a1, . . . , an) ∈ Mn,

Λ(ω;a) = lim
k→∞

Tk(ω
(k);a(k)), (11)

where

T1 = a1, Tk+1 = Tk#λk+1
ak+1,

and λk =
wk∑k
j=1 wj

and k denotes the residual of k mod n.

We naturally ask whether or not the inductive mean SG
k defined in (2) for

given mean G = {Gn}n≥2 satisfies the property (11). One can see that if the
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mean G is symmetric and satisfies the property (3), then the property (11) does
not hold. Indeed, suppose that SG

k (ω(k),a(k)) converges to the Karcher mean

as k → ∞. Then every subsequence of SG
k (ω(k),a(k)) should converge to the

Karcher mean. However, by Proposition 2.2 we have

SG
pn(ω

(pn),a(pn)) = G

(
1

pn
, . . . ,

1

pn
; a1, . . . , an, . . . , a1, . . . , an

)
= G(ω;a)

for any p ∈ N. This means that lim
p→∞

SG
pn(ω

(pn),a(pn)) = G(ω;a), which is a

contradiction to converge to the Karcher mean.
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