IDEALS IN A TRIDIAGONAL ALGEBRA ALG $\mathcal{L}_{\infty}^{\dagger}$

SANG KI LEE AND JOO HO KANG*

ABSTRACT. We find examples of Ideals in a tridiagonal algebra $\mathrm{Alg}\mathcal{L}_{\infty}$ and study some properties of Ideals in $\mathrm{Alg}\mathcal{L}_{\infty}$. We prove the following theorems:

Let k and j be fixed natural numbers. Let \mathcal{A} be a subalgebra of $\operatorname{Alg}\mathcal{L}_{\infty}$ and let $\mathcal{A}_{2,\{k\}} \subset \mathcal{A} \subset \{ T \in \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(2k-1,2k)} = 0 \}$. Then \mathcal{A} is an ideal of $\operatorname{Alg}\mathcal{A}_{\infty}$ if and only if $\mathcal{A} = \mathcal{A}_{2,\{k\}}$, where $\mathcal{A}_{2,\{k\}} = \{ T \in \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(2k-1,2k)} = 0, T_{(2k-1,2k-1)} = T_{(2k,2k)} = 0 \}$.

 $\begin{aligned} \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(2k-1,2k)} &= 0, T_{(2k-1,2k-1)} = T_{(2k,2k)} = 0 \\ \operatorname{Let} \mathcal{B} \text{ be a subalgebra of } \operatorname{Alg}\mathcal{L}_{\infty} \text{ such that } \mathcal{B}_{2,\{j\}} \subset \mathcal{B} \subset \{ T \in \operatorname{Alg}\mathcal{L}_{\infty} \\ \mid T_{(2j+1,2j)} &= 0 \\ \}. \text{ Then } \mathcal{B} \text{ is an ideal of } \operatorname{Alg}\mathcal{A}_{\infty} \text{ if and only if } \mathcal{B} = \mathcal{B}_{2,\{j\}}, \\ \text{where } \mathcal{B}_{2,\{j\}} &= \{ T \in \operatorname{Alg}\mathcal{L}_{\infty} | T_{(2j+1,2j)} = 0, T_{(2j,2j)} = T_{(2j+1,2j+1)} = 0 \\ \end{aligned}$

AMS Mathematics Subject Classification : 47L35. *Key word and phrases* : Linear manifold, Ideal, Tridiagonal algebras.

1. Introduction

Let \mathcal{H} be an infinite-dimensional separable Hilbert space with a fixed orthonormal base $\{e_1, e_2, \cdots\}$ and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded operators acting on \mathcal{H} . If x_1, x_2, \cdots, x_k are vectors in \mathcal{H} , we denote by $[x_1, x_2, \cdots, x_k]$ the closed subspace spanned by the vectors x_1, x_2, \cdots, x_k . A subspace lattice \mathcal{L} is a strongly closed lattice of orthogonal projections acting on \mathcal{H} . We denote by \mathcal{L}_{∞} the subspace lattice generated by the subspaces $[e_1], [e_3], \cdots, [e_{2n-1}], \cdots, [e_1, e_2, e_3], [e_3, e_4, e_5], \cdots, [e_{2n-3}, e_{2n-2}, e_{2n-1}], \cdots$.

By $Alg \mathcal{L}_{\infty}$, we mean the algebra of bounded operators which leave invariant all of the subspaces in \mathcal{L}_{∞} . It is easy to see that all such operators have the

Received January 25, 2016. Revised February 23, 2016. Accepted March 2, 2016. *Corresponding author. † This work was supported by the Daegu University Research Grants (2015).

^{© 2016} Korean SIGCAM and KSCAM.

matrix form

where all non-starred entries are zero.

Let \mathcal{A} be a subalgebra of $\operatorname{Alg}\mathcal{L}_{\infty}$. We say that \mathcal{A} is a left ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ if $AT \in \mathcal{A}$ for all A in $\operatorname{Alg}\mathcal{L}_{\infty}$ and T in \mathcal{A} . \mathcal{A} is called a right ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ if $TA \in \mathcal{A}$ for all A in $\operatorname{Alg}\mathcal{L}_{\infty}$ and T in \mathcal{A} . \mathcal{A} is said to be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ if \mathcal{A} is a left ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ and a right ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$.

Let \mathcal{R} be a ring and let \mathcal{A} be an ideal in \mathcal{R} . \mathcal{A} is called a maximal ideal if there exists no proper ideal \mathcal{B} such that $\mathcal{A} \subsetneqq \mathcal{B} \subsetneqq \operatorname{Alg} \mathcal{L}_{\infty}$. Let \mathcal{R} be a (commutative)ring and let \mathcal{P} be an ideal in \mathcal{R} . \mathcal{P} is prime if $\mathcal{P} \neq \mathcal{R}$ and if $ab \in \mathcal{P}$ for $a, b \in \mathcal{R}$ implies either $a \in \mathcal{P}$ or $b \in \mathcal{P}$.

In this paper, let I be the identity operator on \mathcal{H} . Let \mathbb{C} be the set of all complex numbers and $\mathbb{N} = \{1, 2, \cdots\}$.

2. Examples of ideals in $Alg \mathcal{L}_{\infty}$

We can easily prove the following examples by simple calculation. We denote $T_{(i,j)}$ or t_{ij} by the (i, j)-component of an operator T in Alg \mathcal{L}_{∞} .

Example 1. Let $\mathcal{A}_0 = \{ T \in \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(k,k)} = 0, k \in \mathbb{N} \}$. Then \mathcal{A}_0 is a left ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$ and a right ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$. Hence \mathcal{A}_0 is an ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$.

Example 2. Let J be a nonempty subset of \mathbb{N} . Let $\mathcal{A}_J = \{ T \in \mathrm{Alg}\mathcal{L}_{\infty} \mid T_{(i,i)} = 0, i \in J \}$. Then \mathcal{A}_J is an ideal of $\mathrm{Alg}\mathcal{L}_{\infty}$.

Example 3.

- (1) Let *I* be the identity operator on \mathcal{H} and let $\mathcal{A}_I = \{ \alpha I + T \mid \alpha \in \mathbb{C}, T \in \mathcal{A}_0 \}$. Then \mathcal{A}_I is not an ideal in Alg \mathcal{L}_{∞} .
- (2) Let k and $i(i \ge 2)$ be fixed natural numbers. Let $\mathcal{A}_{k,i} = \{ T \in Alg \mathcal{L}_{\infty} \mid T_{(k,k)} = T_{(k+1,k+1)} = \cdots = T_{(k+i,k+i)} \}$. Then $\mathcal{A}_{k,i}$ is not an ideal.
- (3) Let $\mathcal{D} = \{ A \in Alg \mathcal{L}_{\infty} \mid A \text{ is a diagonal operator.} \}$. Then \mathcal{D} is not an ideal of $Alg \mathcal{L}_{\infty}$.

Example 4. Let Ω be a nonempty subset of \mathbb{N} and let $\mathcal{A}_{\Omega} = \{ T \in \operatorname{Alg}\mathcal{L}_{\infty} | T_{(i,i)} = T_{(j,j)} \text{ for } i, j \in \Omega \text{ and for all } T \in \mathcal{A} \}$. Then \mathcal{A}_{Ω} is a Lie ideal but not an ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$.

Example 5.

(1) Let k be a fixed natural number and let $\mathcal{A}_{0, \{k\}} = \{ T \in \mathcal{A}_0 \mid T_{(2k-1,2k)} = 0 \}$. Then $\mathcal{A}_{0, \{k\}}$ is an ideal in Alg \mathcal{L}_{∞} .

- (2) Let *n* be a fixed natural number and $\Gamma = \{k_1, k_2, \cdots, k_n\}$ (n > 1). $\mathcal{A}_{0,\Gamma} = \{ T \in \mathcal{A}_0 \mid T_{(2k_i-1,2k_i)} = 0, k_i \in \Gamma \}$. Then $\mathcal{A}_{0,\Gamma}$ is an ideal in Alg \mathcal{L}_{∞} .
- (3) Let k_1, k_2, \cdots be natural numbers and $\Omega = \{k_1, k_2, \cdots\}$. Let $\mathcal{A}_{0,\Omega} = \{T \in \mathcal{A}_0 \mid T_{(2k_i-1,2k_i)} = 0, k_i \in \Omega\}$. Then $\mathcal{A}_{0,\Omega}$ is an ideal in Alg \mathcal{L}_{∞} .

Example 6.

- (1) Let j be a fixed natural number and let $\mathcal{B}_{0, \{j\}} = \{ T \in \mathcal{A}_0 \mid T_{(2j+1,2j)} = 0 \}$. Then $\mathcal{B}_{0, \{j\}}$ is an ideal in Alg \mathcal{L}_{∞} .
- (2) Let *m* be a fixed natural number and let $\Gamma = \{j_1, j_2, \cdots, j_m\}$ (m > 1). Let $\mathcal{B}_{0,\Gamma} = \{ T \in \mathcal{A}_0 \mid T_{(2j_i+1,2j_i)} = 0, j_i \in \Gamma \}$. Then $\mathcal{B}_{0,\Gamma}$ is an ideal in Alg \mathcal{L}_{∞} .
- (3) Let j_1, j_2, \cdots be natural numbers and let $\Omega = \{j_1, j_2, \cdots\}$. Let $\mathcal{B}_{0,\Omega} = \{T \in \mathcal{A}_0 \mid T_{(2j_i+1,2j_i)} = 0, j_i \in \Omega\}$. Then $\mathcal{A}_{0,\Omega}$ is an ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$.

Example 7.

- (1) Let k and j be fixed natural numbers. Then $C_{0,\{k,j\}} = \{ T \in \mathcal{A}_0 \mid T_{(2k-1,2k)} = 0, T_{(2j+1,2j)} = 0 \}$ is an ideal in Alg \mathcal{L}_{∞} .
- (2) Let $\{k_1, k_2, \dots, k_n\}$ and $\{j_1, j_2, \dots, j_m\}$ be subsets of \mathbb{N} and let $\Gamma = \{k_i, j_l \mid i = 1, 2, \dots, n, l = 1, 2, \dots, m\}$. Then $\mathcal{C}_{0,\Gamma} = \{T \in \mathcal{A}_0 \mid T_{(2k_i 1, 2k_i)} = 0, T_{(2j_l + 1, 2j_l)} = 0, k_i, j_l \in \Gamma\}$ is an ideal in Alg \mathcal{L}_{∞} .
- (3) Let $\{k_1, k_2, \dots\}$ and $\{j_1, j_2, \dots\}$ be subsets of \mathbb{N} and let $\Omega = \{k_i, j_l \mid i = 1, 2, \dots, l = 1, 2, \dots\}$. Then $\mathcal{C}_{0,\Omega} = \{T \in \mathcal{A}_0 \mid T_{(2k_i 1, 2k_i)} = 0, T_{(2j_l + 1, 2j_l)} = 0, k_i, j_l \in \Omega\}$ is an ideal in Alg \mathcal{L}_{∞} .

Example 8.

- (1) Let k be a fixed natural number. Let $\mathcal{A} = \{ T \in \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(2k-1,2k)} = 0 \}$. Then \mathcal{A} is not an ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$.
- (2) Let k be a fixed natural number. Let $\mathcal{A}_{2,\{k\}} = \{ T \in \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(2k-1,2k)} = 0, T_{(2k,2k)} = T_{(2k-1,2k-1)} = 0 \}$. Then $\mathcal{A}_{2,\{k\}}$ is an ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$.
- (3) Let n be a fixed natural number and let $\Gamma = \{k_1, k_2, \cdots, k_n\}$ (n > 1). Let $\mathcal{A}_{2,\Gamma} = \{T \in \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(2k_i-1,2k_i)} = 0, T_{(2k_i-1,2k_i-1)} = T_{(2k_i,2k_i)} = 0, k_i \in \Gamma \}$. Then $\mathcal{A}_{2,\Gamma}$ is an ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$.
- (4) Let k_1, k_2, \cdots be a subset of \mathbb{N} and let $\Omega = \{k_1, k_2, \cdots\}$. Let $\mathcal{A}_{2,\Omega} = \{T \in \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(2k_i-1,2k_i)} = 0, T_{(2k_i-1,2k_i-1)} = T_{(2k_i,2k_i)} = 0, k_i \in \Omega\}$. Then $\mathcal{A}_{2,\Omega}$ is an ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$.

Example 9.

- (1) Let j be a fixed natural number. Let $\mathcal{B} = \{ T \in \text{Alg}\mathcal{L}_{\infty} \mid T_{(2j+1,2j)} = 0 \}$. Then \mathcal{B} is not an ideal in $\text{Alg}\mathcal{L}_{\infty}$.
- (2) Let j be a fixed natural number. Let $\mathcal{B}_{2,\{j\}} = \{ T \in \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(2j+1,2j)} = 0, T_{(2j,2j)} = T_{(2j+1,2j+1)} = 0 \}$. Then $\mathcal{B}_{2,\{j\}}$ is an ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$.
- (3) Let *m* be a fixed natural number and let $\Gamma = \{j_1, j_2, \cdots, j_m\}$ (m > 1)be a subset of \mathbb{N} . Let $\mathcal{B}_{2,\Gamma} = \{ T \in \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(2j_l+1,2j_l)} = 0, T_{(2j_l,2j_l)} = T_{(2j_l+1,2j_l+1)} = 0, j_l \in \Gamma \}$. Then $\mathcal{B}_{2,\Gamma}$ is an ideal in $\operatorname{Alg}\mathcal{L}_{\infty}$.

Sang Ki Lee and Joo Ho Kang

(4) Let j_1, j_2, \cdots be a subsets of \mathbb{N} and let $\Omega = \{j_1, j_2, \cdots\}$. Let $\mathcal{B}_{2,\Omega} = \{T \in Alg\mathcal{L}_{\infty} \mid T_{(2j_l+1,2j_l)} = 0, T_{(2j_l,2j_l)} = T_{(2j_l+1,2j_l+1)} = 0, j_l \in \Omega\}$. Then $\mathcal{B}_{2,\Omega}$ is an ideal in $Alg\mathcal{L}_{\infty}$.

Example 10.

- (1) Let k and j be fixed natural numbers. Then $C_{2, \{k,j\}} = \{ T \in Alg \mathcal{L}_{\infty} \ | T_{(2k-1,2k)} = 0, T_{(2j+1,2j)} = 0, T_{(2k-1,2k-1)} = T_{(2k,2k)} = 0, T_{(2j,2j)} = T_{(2j+1,2j+1)} = 0 \}$ is an ideal of $Alg \mathcal{L}_{\infty}$.
- (2) Let $\{k_1, k_2, \dots, k_n\}$ and $\{j_1, j_2, \dots, j_m\}$ be subsets of \mathbb{N} and let $\Gamma = \{k_i, j_l \mid i = 1, 2, \dots, n, l = 1, 2, \dots, m\}$. Then $\mathcal{C}_{2,\Gamma} = \{T \in Alg\mathcal{L}_{\infty} \mid T_{(2k_i-1,2k_i)} = 0, T_{(2j_l+1,2j_l)} = 0, T_{(2k_i-1,2k_i-1)} = T_{(2k_i,2k_i)} = 0, T_{(2j_l,2j_l)} = T_{(2j_l+1,2j_l+1)} = 0, k_i, j_l \in \Gamma\}$ is an ideal of $Alg\mathcal{L}_{\infty}$.
- (3) Let $\{k_1, k_2, \dots\}$ and $\{j_1, j_2, \dots\}$ be subsets of \mathbb{N} and let $\Omega = \{k_i, j_l \mid i = 1, 2, \dots, l = 1, 2, \dots\}$. Then $\mathcal{C}_{2,\Omega} = \{ T \in Alg\mathcal{L}_{\infty} \mid T_{(2k_i 1, 2k_i)} = 0, T_{(2j_l + 1, 2j_l)} = 0, T_{(2k_i 1, 2k_i 1)} = T_{(2k_i, 2k_i)} = 0, T_{(2j_l, 2j_l)} = T_{(2j_l + 1, 2j_l + 1)} = 0, k_i, j_l \in \Omega \}$ is an ideal of $Alg\mathcal{L}_{\infty}$.

3. Properties of ideals in $Alg \mathcal{L}_{\infty}$

In this section we investigate some properties of ideals of $\operatorname{Alg}\mathcal{L}_{\infty}$. If $J = \{k\}$ for a fixed natural number k, we denote \mathcal{A}_J by $\mathcal{A}_{\{k\}}$.

Theorem 1. Let k be a fixed natural number. Then

(1) $\mathcal{A}_{\{k\}}$ is prime and (2) $\mathcal{A}_{\{k\}}$ is maximal.

Proof. (1) Let $A = (a_{ij})$ and let $T = (t_{ij})$ be operators in $Alg\mathcal{L}_{\infty}$. Let AT be in $\mathcal{A}_{\{k\}}$. Since $(AT)_{kk} = a_{kk}t_{kk} = 0$, $a_{kk} = 0$ or $t_{kk} = 0$. So A is in $\mathcal{A}_{\{k\}}$ or T is in $\mathcal{A}_{\{k\}}$.

(2) It is sufficient to show that the case k=1. Let \mathcal{A} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ such that $\mathcal{A}_{\{1\}} \subset \mathcal{A} \subset \operatorname{Alg}\mathcal{A}_{\infty}$. Suppose that there exists $T = (t_{ij})$ in \mathcal{A} such that $t_{11} \neq 0$. Let $S = (s_{ij})$ be an element of $\operatorname{Alg}\mathcal{A}_{\infty}$. If $s_{11} = 0$, then $S \in \mathcal{A}_{\{1\}}$. Let $s_{11} \neq 0$. Let $A = (a_{ij})$ be an operator defined by

$$\begin{cases} a_{11} = 0\\ a_{ij} = -t_{ij} & \text{otherwise.} \end{cases}$$

Then A + T is an operator in \mathcal{A} . Put $A_1 = A + T$. Then $A_{1(1,1)} = t_{11}$ and $A_{1(i,j)} = 0$ if $(i,j) \neq (1,1)$. Let $B = (b_{ij})$ be an operator defined by

$$\begin{cases} b_{11} = 0\\ b_{ij} = s_{ij} & \text{otherwise.} \end{cases}$$

Then B is an element of $\mathcal{A}_{\{1\}}$. Put $x = \frac{s_{11}}{t_{11}}$. Then $B + xA_1 = S$ is an operator of \mathcal{A} . Hence $\mathcal{A} = \operatorname{Alg}\mathcal{L}_{\infty}$.

Theorem 2. Let \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$. Let k be a fixed natural number and let $\mathcal{A}_{2,\{k\}} \subset \mathcal{A} \subset \{ T \in Alg\mathcal{L}_{\infty} \mid T_{(2k-1,2k)} = 0 \}$. Then \mathcal{A} is an ideal of $Alg\mathcal{A}_{\infty}$ if and only if $\mathcal{A} = \mathcal{A}_{2,\{k\}}$.

Proof. Let $A = (a_{ij})$ be an operator in $Alg\mathcal{L}_{\infty}$ and let $T = (t_{ij})$ be an operator in \mathcal{A} . Suppose that \mathcal{A} is an ideal of $Alg\mathcal{A}_{\infty}$. Then the (2k - 1, 2k)-component of AT is

$$a_{2k-1\ 2k-1}t_{2k-1\ 2k} + a_{2k-1\ 2k}t_{2k\ 2k} = a_{2k-1\ 2k}t_{2k\ 2k} = 0 \tag{(*)}$$

Since (*) holds for all A in Alg \mathcal{L}_{∞} , $t_{2k}|_{2k} = 0$. Also the (2k - 1, 2k)-component of TA is

$$t_{2k-1\ 2k-1\ 2k-1\ 2k} + t_{2k-1\ 2k} a_{2k\ 2k} = t_{2k-1\ 2k-1\ 2k-1\ 2k} a_{2k-1\ 2k} = 0 \tag{(**)}$$

Since (**) holds for all A in Alg \mathcal{L}_{∞} , $t_{2k-1} = 0$. Hence $\mathcal{A} \subset \mathcal{A}_{2, \{k\}}$ and $\mathcal{A} = \mathcal{A}_{2, \{k\}}$. Suppose that $\mathcal{A} = \mathcal{A}_{2, \{k\}}$. Then \mathcal{A} is an ideal of Alg \mathcal{L}_{∞} by Example 8-(2).

Theorem 3. Let j be a fixed natural number and let \mathcal{B} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{B}_{2,\{j\}} \subset \mathcal{B} \subset \{ T \in Alg\mathcal{L}_{\infty} \mid T_{(2j+1,2j)} = 0 \}$. Then \mathcal{B} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{B} = \mathcal{B}_{2,\{j\}}$.

Proof. Let $A = (a_{ij})$ be an operator in $Alg\mathcal{L}_{\infty}$ and let $T = (t_{ij})$ be an operator in \mathcal{B} . Suppose that \mathcal{B} is an ideal of $Alg\mathcal{A}_{\infty}$. Then the (2j + 1, 2j)-component of AT is

$$a_{2j+1\ 2j+1}t_{2j+1\ 2j} + a_{2j+1\ 2j}t_{2j\ 2j} = a_{2j+1\ 2j}t_{2j\ 2j} = 0 \tag{(*)}$$

Since (*) holds for all A in Alg \mathcal{L}_{∞} , $t_{2j}|_{2j} = 0$. Also the (2j + 1, 2j)-component of TA is

 $t_{2j+1\ 2j+1\ 2j+1\ 2j} + t_{2j+1\ 2j\ 2j} = t_{2j+1\ 2j+1\ 2j+1\ 2j} = 0 \tag{(**)}$

Since (**) holds for all A in $\operatorname{Alg}\mathcal{L}_{\infty}$, $t_{2j+1} _{2j+1} = 0$. Hence $T \in \mathcal{B}_{2,\{j\}}$ and so $\mathcal{B} \subset \mathcal{B}_{2,\{j\}}$. Thus $\mathcal{B} = \mathcal{B}_{2,\{j\}}$. Assume that $\mathcal{B} = \mathcal{B}_{2,\{j\}}$. Then \mathcal{B} is an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ by Example 9-(2).

Theorem 4. Let k be a fixed natural number and let \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{A}_{\{k,k+1\}} \subset \mathcal{A} \subset \mathcal{A}_{\{k\}}$. Then \mathcal{A} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{A} = \mathcal{A}_{\{k,k+1\}}$ or $\mathcal{A} = \mathcal{A}_{\{k\}}$.

Proof. It is sufficient to show that the case k = 1. Let \mathcal{A} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$. Suppose that $\mathcal{A} \neq \mathcal{A}_{\{1,2\}}$. Then there exists an element $T = (t_{ij})$ in \mathcal{A} and $T \notin \mathcal{A}_{\{1,2\}}$. Then $t_{22} \neq 0$. Let $A = (a_{ij})$ be an element of $\mathcal{A}_{\{1\}}$. If $a_{22} = 0$, then $A \in \mathcal{A}_{\{1,2\}}$ and so $A \in \mathcal{A}$. Let $a_{22} \neq 0$. Define an operator $B = (b_{ij})$ by

$$\begin{cases} b_{11} = 0, & b_{22} = 0\\ b_{ij} = -t_{ij} & \text{otherwise.} \end{cases}$$

Then $B \in \mathcal{A}$. Put B + T = D. Then $D \in \mathcal{A}$. Put $x = \frac{a_{22}}{t_{22}}$. Then $xD \in \mathcal{A}$. Let $S = (s_{ij})$ be an operator defined by

$$\begin{cases} s_{22} = 0\\ s_{ij} = a_{ij} & \text{otherwise.} \end{cases}$$

Then $S \in \mathcal{A}_{\{1,2\}}$ and hence $A = S + xD \in \mathcal{A}$.

Theorem 5. Let k be a fixed natural number and let \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\{S \in Alg\mathcal{L}_{\infty} \mid S_{(2k-1,2k)} = 0\} \subset \mathcal{A} \subset Alg\mathcal{L}_{\infty}$. Then \mathcal{A} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{A} = Alg\mathcal{L}_{\infty}$.

Proof. It is sufficient to show that the case k = 2. Let \mathcal{A} is an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$. Since $\{ S \in \operatorname{Alg}\mathcal{L}_{\infty} \mid S_{(3,4)} = 0 \}$ is not an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$, there exists $T = (t_{ij}) \in \mathcal{A}$ such that $t_{34} \neq 0$. Let $A = (a_{ij})$ be an operator in $\operatorname{Alg}\mathcal{L}_{\infty}$. If $a_{34} = 0$, then $A \in \mathcal{A}$. Let $a_{34} \neq 0$. Let $S = (s_{ij})$ be an operator defined by

$$\begin{cases} s_{34} = 0\\ s_{ij} = -t_{ij} & \text{otherwise.} \end{cases}$$

Then $S \in \mathcal{A}$. So $S + T \in \mathcal{A}$. Put D = S + T. Define an operator $B = (b_{ij})$ by

$$\begin{cases} b_{34} = 0\\ b_{ij} = a_{ij} & \text{otherwise.} \end{cases}$$

Then $B \in \mathcal{A}$. Put $x = \frac{a_{34}}{t_{34}}$. Then $B + xD = A \in \mathcal{A}$.

Theorem 6. Let j be a fixed natural number and let \mathcal{B} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\{T \in Alg\mathcal{L}_{\infty} \mid T_{(2j+1,2j)} = 0\} \subset \mathcal{B} \subset Alg\mathcal{L}_{\infty}$. Then \mathcal{B} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{B} = Alg\mathcal{L}_{\infty}$.

Proof. It is sufficient to show that j = 1. Let \mathcal{B} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$. Since $\{ T \in \operatorname{Alg}\mathcal{L}_{\infty} \mid T_{(3,2)} = 0 \}$ is not an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$, there exists $T = (t_{ij})$ in \mathcal{B} such that $t_{32} \neq 0$. Let $A = (a_{ij})$ be an operator in $\operatorname{Alg}\mathcal{L}_{\infty}$. If $a_{32} = 0$, then $A \in \mathcal{B}$. Let $a_{32} \neq 0$. Let $S = (s_{ij})$ be an operator defined by

$$\begin{cases} s_{32} = 0 \\ s_{ij} = -t_{ij} & \text{otherwise.} \end{cases}$$

Then $S \in \mathcal{B}$. So $S + T \in \mathcal{B}$. Put S + T = D. Define an operator $B = (b_{ij})$ by

$$\begin{cases} b_{32} = 0\\ b_{ij} = a_{ij} & \text{otherwise.} \end{cases}$$

Then $B \in \mathcal{B}$. Put $x = \frac{a_{32}}{t_{32}}$. Then $B + xD = A \in \mathcal{B}$.

Theorem 7. Let $\Gamma = \{k_1, k_2\}$ be a subset of \mathbb{N} such that $k_1 \leq k_2$. Let \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{A}_{2,\Gamma} \subset \mathcal{A} \subset \{T \in Alg\mathcal{L}_{\infty} \mid T_{(2k_i-1,2k_i)} = 0, i = 1, 2\}$. Then \mathcal{A} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{A} = \mathcal{A}_{2,\Gamma}$.

Proof. Let \mathcal{A} is an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ and let $T = (t_{ij})$ be an operator in \mathcal{A} . Then $T_{(2k_i-1,2k_i)} = 0, i = 1, 2$. Since \mathcal{A} is an ideal of $\operatorname{Alg}\mathcal{A}_{\infty}, T_{(2k_i-1,2k_i-1)} = 0 = T_{(2k_i,2k_i)}(i = 1, 2)$ by Theorem 2. So $\mathcal{A} \subset \mathcal{A}_{2,\Gamma}$. Hence $\mathcal{A} = \mathcal{A}_{2,\Gamma}$. \Box

Theorem 8. Let $\Gamma = \{k_1, k_2\}$ be a subset of \mathbb{N} such that $k_1 \leq k_2$. Let \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{A}_{2,\Gamma} \subset \mathcal{A} \subset \mathcal{B}$, where $\mathcal{B} = \mathcal{A}_{2,\{k_1\}} \cap \mathcal{A}_{\{2k_2-1,2k_2\}}$. Then \mathcal{A} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{A} = \mathcal{A}_{2,\Gamma}$ or $\mathcal{A} = \mathcal{B}$.

262

Proof. It is sufficient to show that $\Gamma = \{k_1, k_2\} = \{2, 3\}$. Let \mathcal{A} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ and $\mathcal{A} \neq \mathcal{A}_{2,\Gamma}$. Then there exists an element $T \in \mathcal{A}$ such that $T \notin \mathcal{A}_{2,\Gamma}$, i.e. $T_{(5,6)} \neq 0$. Let $A = (a_{ij}) \in \mathcal{B}$. If $a_{56} = 0$, then $\mathcal{A} \in \mathcal{A}_{2,\Gamma}$ and so $\mathcal{A} \in \mathcal{A}$. Let $a_{56} \neq 0$. Let $S = (s_{ij})$ be an operator defined by

$$\begin{cases} s_{56} = 0\\ s_{ij} = -t_{ij} & \text{otherwise} \end{cases}$$

Then $S \in \mathcal{A}_{2,\Gamma}$ and so $S \in \mathcal{A}$. Put $S + T = A_1$. Then A_1 is an operator of \mathcal{A} . Let $B = (b_{ij})$ be an operator defined by

$$\begin{cases} b_{56} = 0\\ b_{ij} = a_{ij} & \text{otherwise} \end{cases}$$

Then $B \in \mathcal{A}_{2,\Gamma}$. Put $x = \frac{a_{56}}{t_{56}}$. Then $A = B + xA_1 \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{B}$.

Theorem 9. Let n be a fixed natural number(n > 1) and let $\Gamma = \{j_1, j_2\}$ be a subset of \mathbb{N} such that $j_1 \leq j_2$. Let \mathcal{B} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{B}_{2,\Gamma} \subset \mathcal{B} \subset \{T \in Alg\mathcal{L}_{\infty} \mid T_{(2j_i+1,2j_i)} = 0, i = 1,2\}$. Then \mathcal{B} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{B} = \mathcal{B}_{2,\Gamma}$.

Proof. Let \mathcal{B} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ and let $A = (a_{ij}) \in \mathcal{B}$. Then $a_{2j_i+1 \ 2j_i} = 0$ (i = 1, 2). Since \mathcal{B} is an ideal, $a_{2j_i \ 2j_i} = 0 = a_{2j_i+1 \ 2j_i+1}$ for all $j_i \in \Gamma$ by Theorem 2. Hence $A \in \mathcal{B}_{2,\Gamma}$.

Theorem 10. Let $\Gamma = \{j_1, j_2\}$ be a subset of natural numbers. Let $\mathcal{B} = \mathcal{B}_{2,\{j_1\}} \cap \mathcal{A}_{\{2j_2,2j_2+1\}}$. Let \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{B}_{2,\Gamma} \subset \mathcal{A} \subset \mathcal{B}$. Then \mathcal{A} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{A} = \mathcal{B}_{2,\Gamma}$ or $\mathcal{A} = \mathcal{B}$.

Proof. Let \mathcal{A} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ and let $\mathcal{A} \neq \mathcal{B}_{2,\Gamma}$. Then there exists an operator $T = (t_{ij})$ such that $T \in \mathcal{A}$ and $T \notin \mathcal{B}_{2,\Gamma}$, *i.e.* $t_{(2j_2+1,2j_2)} \neq 0$. Let $A = (a_{ij}) \in \mathcal{B}$. If $a_{2j_2+1,2j_2} = 0$, then $A \in \mathcal{A}$. Let $a_{2j_2+1,2j_2} \neq 0$. Define an operator $B = (b_{ij})$ by

$$\begin{cases} b_{2j_2+1 \ 2j_2} = 0\\ b_{ij} = -t_{ij} \quad \text{otherwise.} \end{cases}$$

Then $B \in \mathcal{A}$ and $B + T \in \mathcal{A}$. Put D = B + T and $\alpha = \frac{a_{2j_2+1-2j_2}}{t_{2j_2+1-2j_2}}$. Then $\alpha D \in \mathcal{A}$. Define an operator T_1 by

$$\begin{cases} T_{1(2j_2+1,2j_2)} = 0\\ T_{1(i,j)} = a_{ij} & \text{otherwise.} \end{cases}$$

Then $T_1 \in \mathcal{A}$. So $\alpha D + T_1 = A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{B}$.

Theorem 11. Let k and j be fixed natural numbers. Let C be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{C}_{2, \{k, j\}} \subset \mathcal{C} \subset \mathcal{B} = \{ T \in Alg\mathcal{L}_{\infty} \mid T_{(2k-1,2k)} = 0, T_{(2j+1,2j)} = 0 \}$. Then C is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{C} = \mathcal{C}_{2,\{k,j\}}$.

Proof. Let \mathcal{C} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ and let $A \in \mathcal{C}$. Since $\mathcal{C} \subset \mathcal{B}$, $A \in \mathcal{B}$, i.e. $A_{(2k-1,2k)} = 0, A_{(2j+1,2j)} = 0$. Since \mathcal{C} is an ideal, $A_{(2k-1,2k-1)} = 0, A_{(2k,2k)} = 0, A_{(2j,2j)} = 0, A_{(2j+1,2j+1)} = 0$ by Theorem 3. So $A \in \mathcal{C}_{2,\{k,j\}}$. Hence $\mathcal{C} = \mathcal{C}_{2,\{k,j\}}$.

Theorem 12. Let k be a fixed natural number and let \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{A}_{0,\{k\}} \subset \mathcal{A} \subset \mathcal{A}_0$. Then \mathcal{A} is an ideal of $Alg\mathcal{A}_{\infty}$ if and only if $\mathcal{A} = \mathcal{A}_{0,\{k\}}$ or $\mathcal{A} = \mathcal{A}_0$.

Proof. Let \mathcal{A} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$. It is sufficient to show that the case k = 1, i.e. if $\mathcal{A}_{0,\{1\}} \subset \mathcal{A} \subset \mathcal{A}_0$, then $\mathcal{A} = \mathcal{A}_{0,\{1\}}$ or $\mathcal{A} = \mathcal{A}_0$. Assume that $\mathcal{A} \neq \mathcal{A}_{0,\{1\}}$. Then there exists $T = (t_{ij})$ in \mathcal{A} such that $T \notin \mathcal{A}_{0,\{1\}}$. Then $t_{12} \neq 0$ and $t_{ii} = 0$ for all $i \in \mathbb{N}$. Let $\mathcal{A} = (a_{ij})$ be an element of \mathcal{A}_0 . If $a_{12} = 0$, $\mathcal{A} \in \mathcal{A}_{0,\{1\}} \subset \mathcal{A}$. If $a_{12} \neq 0$, let \mathcal{A}_1 be an operator defined by

$$\begin{cases} A_{1(1,2)} = 0\\ A_{1(i,j)} = a_{ij} & \text{otherwise.} \end{cases}$$

Then $A_1 \in \mathcal{A}_{0,\{1\}} \subset \mathcal{A}$. Let T_1 be an operator defined by

$$\begin{cases} T_{1(1,2)} = 0 \\ T_{1(i,j)} = -t_{ij} & \text{otherwise.} \end{cases}$$

Then $T_1 \in \mathcal{A}_{0,\{1\}} \subset \mathcal{A}$. Let $T_2 = T + T_1 \in \mathcal{A}$. Then $T_{2(1,2)} = t_{12}$ and $T_{2(i,j)} = 0$ for $(i,j) \neq (1,2)$. Let $x = \frac{a_{12}}{t_{12}}$. Then $xT_2 + A_1 = A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_0$. \Box

Theorem 13. Let $\Gamma = \{k_1, k_2\}$ and let \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{A}_{0,\Gamma} \subset \mathcal{A} \subset \mathcal{A}_{0,\{k_i\}}$ i = 1 or i = 2. Then \mathcal{A} is an ideal of $Alg\mathcal{A}_{\infty}$ if and only if $\mathcal{A} = \mathcal{A}_{0,\Gamma}$ or $\mathcal{A} = \mathcal{A}_{0,\{k_i\}}$.

Proof. Let \mathcal{A} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$. It is sufficient to show that the case $k_1 = 1$, $k_2 = 2$, $k_i = 1$. Suppose that $\mathcal{A} \neq \mathcal{A}_{0,\{1,2\}}$. Then there exists an element $T = (t_{ij})$ in \mathcal{A} and $T \notin \mathcal{A}_{0,\{1,2\}}$. Then $t_{34} \neq 0$. Let $A = (a_{ij})$ be an element of $\mathcal{A}_{0,\{1\}}$. If $a_{34} = 0$, then $A \in \mathcal{A}_{0,\{1,2\}}$ and so $A \in \mathcal{A}$. Let $a_{34} \neq 0$. Define an operator $S = (s_{ij})$ by

$$\begin{cases} s_{12} = 0, \ s_{34} = 0\\ s_{ij} = -t_{ij} \quad \text{otherwise.} \end{cases}$$

Then $S \in \mathcal{A}_{0,\{1,2\}}$. Put $S + T = A_1$. Then $A_1 \in \mathcal{A}$. Put $x = \frac{a_{34}}{t_{34}}$. Then $xA_1 \in \mathcal{A}$. Define an operator $B = (b_{ij})$ by

$$\begin{cases} b_{12} = 0, \ b_{34} = 0, \ b_{ii} = 0\\ b_{ij} = a_{ij} & \text{otherwise.} \end{cases}$$

Then $B \in \mathcal{A}_{0,\{1,2\}}$ and hence $B + xA_1 = A \in \mathcal{A}$. So $\mathcal{A} = \mathcal{A}_{0,\{1\}}$.

Theorem 14. Let k be a fixed natural number and \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{A}_{2,\{k\}} \subset \mathcal{A} \subset \mathcal{A}_{\{2k-1,2k\}}$. Then \mathcal{A} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{A} = \mathcal{A}_{2,\{k\}}$ or $\mathcal{A} = \mathcal{A}_{\{2k-1,2k\}}$.

Proof. Let \mathcal{A} be an ideal of Alg \mathcal{L}_{∞} . It is sufficient to show that the case k = 1. i.e. if $\mathcal{A}_{2,\{1\}} \subset \mathcal{A} \subset \mathcal{A}_{\{1,2\}}$, then $\mathcal{A} = \mathcal{A}_{2,\{1\}}$ or $\mathcal{A} = \mathcal{A}_{\{1,2\}}$. Assume that $\mathcal{A} \neq \mathcal{A}_{2,\{1\}}$. Then there exists $T = (t_{ij})$ in \mathcal{A} such that $T \notin \mathcal{A}_{2,\{1\}}$. Then $t_{12} \neq 0$ and $t_{11} = 0$ and $t_{22} = 0$. Let $\mathcal{A} = (a_{ij})$ be an element of $\mathcal{A}_{\{1,2\}}$. If $a_{12} = 0$, $A \in \mathcal{A}_{2,\{1\}} \subset \mathcal{A}$. If $a_{12} \neq 0$, let \mathcal{A}_1 be an operator defined by

$$\begin{cases} A_{1(1,2)} = 0 \\ A_{1(i,j)} = a_{ij} & \text{otherwise.} \end{cases}$$

Then $A_1 \in \mathcal{A}_{2,\{1\}} \subset \mathcal{A}$. Let T_1 be an operator defined by

$$\begin{cases} T_{1(1,2)} = 0\\ T_{1(i,j)} = -t_{ij} & \text{otherwise.} \end{cases}$$

Then $T_1 \in \mathcal{A}_{2,\{1\}} \subset \mathcal{A}$. Let $T_2 = T + T_1 \in \mathcal{A}$. Then $T_{2(1,2)} = t_{12}$ and $T_{2(i,j)} = 0$ for $(i,j) \neq (1,2)$. Let $x = \frac{a_{12}}{t_{12}}$. Then $xT_2 + A_1 = A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_{\{1,2\}}$. \Box

If we modify the proof of Theorem 14, then we can prove the following Theorem.

Theorem 15. Let j be a fixed natural number and let \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{B}_{2,\{j\}} \subset \mathcal{A} \subset \mathcal{A}_{\{2j,2j+1\}}$. Then \mathcal{A} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{A} = \mathcal{B}_{2,\{j\}}$ or $\mathcal{A} = \mathcal{A}_{\{2j,2j+1\}}$.

Theorem 16. Let $\Gamma = \{j_1, j_2\}$ and let \mathcal{B} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{B}_{0,\Gamma} \subset \mathcal{B} \subset \mathcal{B}_{0,\{j_i\}}$ i = 1 or i = 2. Then \mathcal{B} is an ideal of $Alg\mathcal{A}_{\infty}$ if and only if $\mathcal{B} = \mathcal{B}_{0,\Gamma}$ or $\mathcal{B} = \mathcal{B}_{0,\{j_i\}}$.

Proof. Let \mathcal{B} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$. It is sufficient to show that the case $j_1 = 1$, $j_2 = 2$ and $j_i = 2$. Let $\mathcal{B}_{0,\Gamma} \subset \mathcal{B} \subset \mathcal{B}_{0,\{2\}}$. Suppose that $\mathcal{B} \neq \mathcal{B}_{0,\Gamma}$. Then there exists an element $T = (t_{ij})$ in \mathcal{B} and $T \notin \mathcal{B}_{0,\Gamma}$. Then $t_{32} \neq 0$. Let $A = (a_{ij})$ be an element of $\mathcal{B}_{0,\{2\}}$. If $a_{32} = 0$, then $A \in \mathcal{B}_{0,\Gamma}$ and so $A \in \mathcal{B}$. Let $a_{32} \neq 0$. Define an operator $B = (b_{ij})$ by

$$\begin{cases} b_{32} = 0, & b_{54} = 0 \\ b_{ij} = -t_{ij} & \text{otherwise} \end{cases}$$

Then $B \in \mathcal{B}_{0,\Gamma}$. Put $B + T = A_1$. Then $A_1 \in \mathcal{B}$. Put $x = \frac{a_{32}}{t_{32}}$. Then $xA_1 \in \mathcal{B}$. Let $S = (s_{ij})$ be an operator defined by

$$\begin{cases} s_{32} = 0, \ s_{54} = 0, \ s_{ii} = 0 \\ s_{ij} = a_{ij} \quad \text{otherwise.} \end{cases}$$

Then $S \in \mathcal{B}_{0,\Gamma}$ and hence $S + xA_1 = A \in \mathcal{B}$. So $\mathcal{B} = \mathcal{B}_{0,\{2\}}$.

If we repeat the proof of the Theorem 12 and the Theorem 13, then we can get the following theorem.

Theorem 17. Let k, j be natural numbers and $\Omega_{1,1} = \{k, j\}$.

i) Let \mathcal{C} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{C}_{0,\Omega_{1,1}} \subset \mathcal{C} \subset \mathcal{C}_{0,\Omega_{1,}}$, where $\mathcal{C}_{0,\Omega_{1,1}} = \{ T \in \mathcal{A}_0 \mid T_{(2k-1,2k)} = 0 = T_{(2j+1,2j)} \}$ and $\mathcal{C}_{0,\Omega_{1,}} = \{ T \in \mathcal{C} \mid T \in$

 $\mathcal{A}_0 \mid T_{(2k-1,2k)} = 0$ }. Then \mathcal{C} is an ideal of $Alg \mathcal{L}_{\infty}$ if and only if $\mathcal{C} = \mathcal{C}_{0,\Omega_{1,1}}$ or $\mathcal{C} = \mathcal{C}_{0,\Omega_{1,2}}$.

ii) Let C be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{C}_{0,\Omega_{1,1}} \subset C \subset \mathcal{C}_{0,\Omega_{,1}}$. Then C is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $C = \mathcal{C}_{0,\Omega_{1,1}}$ or $C = \mathcal{C}_{0,\Omega_{,1}}$.

Let Λ and Γ be nonempty subsets of N and $\mathcal{A}_{2,\Gamma} \cap \mathcal{A}_{\Lambda}$ will be denoted by $\mathcal{A}_{2,\Gamma,\Lambda}$. And we will prove only one case of relationships between ideals of $\mathcal{A}_{2,\Gamma,\Lambda}$. The other relations will be proved by the same way.

Theorem 18. Let $\Gamma = \{k_1, k_2\} = \{1, 2\}$ and $\Lambda = \{3, 4\}$. Let \mathcal{A} be a subalgebra of $Alg\mathcal{L}_{\infty}$ such that $\mathcal{A}_{2,\Gamma} \subset \mathcal{A} \subset \mathcal{A}_{2,\{1\},\{3,4\}}$. Then \mathcal{A} is an ideal of $Alg\mathcal{L}_{\infty}$ if and only if $\mathcal{A} = \mathcal{A}_{2,\Gamma}$ or $\mathcal{A} = \mathcal{A}_{2,\{1\},\{3,4\}}$.

Proof. Let \mathcal{A} be an ideal of $\operatorname{Alg}\mathcal{L}_{\infty}$ and $\mathcal{A} \neq \mathcal{A}_{2,\Gamma}$. Then there exists an element $T = (t_{ij}) \in \mathcal{A}$ and $T = (t_{ij}) \notin \mathcal{A}_{2,\Gamma}$, i.e. $t_{34} \neq 0$. Let $A = (a_{ij})$ be an element of $\mathcal{A}_{2,\{1\},\{3,4\}}$. If $a_{34} = 0$, then $A \in \mathcal{A}_{2,\Gamma}$ and so $A \in \mathcal{A}$. If $a_{34} \neq 0$, we let define an operator $S = (s_{ij})$ by

$$\begin{cases} s_{11} = 0, \ s_{12} = 0, \ s_{22} = 0, \ s_{33} = 0, \ s_{34} = 0, \ s_{44} = 0 \\ s_{ij} = -t_{ij} \quad \text{otherwise.} \end{cases}$$

Then $\mathcal{S} \in \mathcal{A}_{2,\Gamma}$ and so $\mathcal{S} \in \mathcal{A}$. We define an operator $B = (b_{ij})$ by

 $\begin{cases} b_{11} = 0, \ b_{12} = 0, \ b_{22} = 0, \ b_{33} = 0, \ b_{34} = 0, \ b_{44} = 0 \\ b_{ij} = a_{ij} \quad \text{otherwise.} \end{cases}$

Then $B \in \mathcal{A}$. Put D = S + T and $x = \frac{a_{34}}{t_{34}}$. Then $A = B + xD \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_{2,\{1\},\{1,4\}}$.

If we denote $\mathcal{B}_{2,\Gamma} \cap \mathcal{B}_{\Lambda}$ by $\mathcal{B}_{2,\Gamma,\Lambda}$ and $\mathcal{C}_{2,\Gamma} \cap \mathcal{C}_{\Lambda}$ by $\mathcal{C}_{2,\Gamma,\Lambda}$, then we will prove relationships between ideals $\mathcal{B}_{2,\Gamma,\Lambda}$ and $\mathcal{C}_{2,\Gamma,\Lambda}$ by modifying the method of the proof of Theorem 15.

Theorem 19. Let k_i be natural numbers such that $k_i \leq k_{i+1}$, $i = 1, 2, \cdots$. Let $\Gamma_1 = \{k_1\}, \Gamma_2 = \{k_1, k_2\}, \cdots, \Gamma_n = \{k_1, k_2, \cdots, k_n\}$ and $\Gamma = \{k_1, k_2, \cdots\}$. Then $\mathcal{A}_{0,\Gamma} \subset \cdots \subset \mathcal{A}_{0,\Gamma_n} \subset \mathcal{A}_{0,\Gamma_{n-1}} \subset \cdots \subset \mathcal{A}_{0,\Gamma_2} \subset \mathcal{A}_{0,\Gamma_1} = \mathcal{A}_{0,\{k_1\}}$

 $\begin{array}{l} \mathcal{A}_{2,\Gamma} \subset \cdots \subset \mathcal{A}_{2,\Gamma_n} \subset \mathcal{A}_{2,\Gamma_{n-1}} \subset \cdots \subset \mathcal{A}_{2,\Gamma_2} \subset \mathcal{A}_{2,\Gamma_1} = \mathcal{A}_{2,\{k_1\}} \\ \mathcal{B}_{0,\Gamma} \subset \cdots \subset \mathcal{B}_{0,\Gamma_n} \subset \mathcal{B}_{0,\Gamma_{n-1}} \subset \cdots \subset \mathcal{B}_{0,\Gamma_2} \subset \mathcal{B}_{0,\Gamma_1} = \mathcal{B}_{0,\{k_1\}} \\ \mathcal{B}_{2,\Gamma} \subset \cdots \subset \mathcal{B}_{2,\Gamma_n} \subset \mathcal{B}_{2,\Gamma_{n-1}} \subset \cdots \subset \mathcal{B}_{2,\Gamma_2} \subset \mathcal{B}_{2,\Gamma_1} = \mathcal{B}_{2,\{k_1\}} \end{array}$

References

- C.K. Fong, C.R. Miers and A.R. Sourour, Lie and Jordan ideals of operators on Hilbert spaces, Proc. Amer. Math. Soc. 84 (1982), 516–520.
- A, Hopenwasser and V. Paulsen, Lie ideal in operator algebras, J. Operator Theory 52 (2004), 325–340.
- T.D. Hudson, L.W. Marcoux and A.R. Sourour, *Lie ideal in Triangular operator algebras*, Trans. Amer. Math. Soc. **350** (1998), 3321–3339.
- 4. Y.S. Jo, Isometris of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97–115.

- 5. Y.S. Jo and T.Y. Choi, Isomorphisms of $Alg\mathcal{L}_n$ and $Alg\mathcal{L}_\infty,$ Michigan Math. J. 37 (1990), 305–314.
- 6. J.H. Kang, Lie ideals in Tridiagonal Algebra Alg \mathcal{L}_{∞} , Bull. of Korean Math. Soc. **52** (2015), 351–361.

Sang Ki Lee Dept. of Math. Education, Daegu University, Daegu, Korea. e-mail: sangklee@daegu.ac.kr

Joo Ho Kang Dept. of Math. Daegu University, Daegu, Korea. e-mail: jhkang@daegu.ac.kr