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IDEALS IN A TRIDIAGONAL ALGEBRA ALGL∞
†

SANG KI LEE AND JOO HO KANG∗

Abstract. We find examples of Ideals in a tridiagonal algebra AlgL∞
and study some properties of Ideals in AlgL∞. We prove the following
theorems:

Let k and j be fixed natural numbers. Let A be a subalgebra of AlgL∞
and let A2,{k} ⊂ A ⊂ { T ∈ AlgL∞ | T(2k−1,2k) = 0 }. Then A is

an ideal of AlgA∞ if and only if A = A2,{k}, where A2,{k} = { T ∈
AlgL∞ | T(2k−1,2k) = 0, T(2k−1,2k−1) = T(2k,2k) = 0 }.

Let B be a subalgebra of AlgL∞ such that B2,{j}⊂ B ⊂ { T ∈ AlgL∞
| T(2j+1,2j) = 0 }. Then B is an ideal of AlgA∞ if and only if B = B2,{j},

where B2,{j} = { T ∈ AlgL∞|T(2j+1,2j) = 0, T(2j,2j) = T(2j+1,2j+1) = 0}.

AMS Mathematics Subject Classification : 47L35.
Key word and phrases : Linear manifold, Ideal, Tridiagonal algebras.

1. Introduction

Let H be an infinite-dimensional separable Hilbert space with a fixed or-
thonormal base {e1, e2, · · · } and let B(H) be the algebra of all bounded opera-
tors acting on H. If x1, x2, · · · , xk are vectors in H, we denote by [x1, x2, · · · , xk]
the closed subspace spanned by the vectors x1, x2, · · · , xk. A subspace lat-
tice L is a strongly closed lattice of orthogonal projections acting on H. We
denote by L∞ the subspace lattice generated by the subspaces [e1], [e3], · · · ,
[e2n−1], · · · , [e1, e2, e3], [e3, e4, e5], · · · , [e2n−3, e2n−2, e2n−1], · · · .

By AlgL∞, we mean the algebra of bounded operators which leave invariant
all of the subspaces in L∞. It is easy to see that all such operators have the
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matrix form 

∗ ∗
∗
∗ ∗ ∗

∗
∗ ∗ ∗

. . .


where all non-starred entries are zero.
Let A be a subalgebra of AlgL∞. We say that A is a left ideal of AlgL∞ if

AT ∈ A for all A in AlgL∞ and T in A. A is called a right ideal of AlgL∞ if
TA ∈ A for all A in AlgL∞ and T in A. A is said to be an ideal of AlgL∞ if A
is a left ideal of AlgL∞ and a right ideal of AlgL∞.

Let R be a ring and let A be an ideal in R. A is called a maximal ideal
if there exists no proper ideal B such that A $ B $ AlgL∞. Let R be a
(commutative)ring and let P be an ideal in R. P is prime if P ̸= R and if
ab ∈ P for a, b ∈ R implies either a ∈ P or b ∈ P.

In this paper, let I be the identity operator on H. Let C be the set of all
complex numbers and N = {1, 2, · · · }.

2. Examples of ideals in AlgL∞

We can easily prove the following examples by simple calculation. We denote
T(i,j) or tij by the (i, j)-component of an operator T in AlgL∞.

Example 1. Let A0 = { T ∈ AlgL∞ | T(k,k) = 0, k ∈ N }. Then A0 is a left
ideal in AlgL∞ and a right ideal in AlgL∞. Hence A0 is an ideal in AlgL∞.

Example 2. Let J be a nonempty subset of N. Let AJ = { T ∈ AlgL∞ | T(i,i) =
0, i ∈ J }. Then AJ is an ideal of AlgL∞.

Example 3.

(1) Let I be the identity operator on H and let AI = { αI + T | α ∈ C, T ∈
A0 }. Then AI is not an ideal in AlgL∞.

(2) Let k and i(i > 2) be fixed natural numbers. Let Ak,i = { T ∈
AlgL∞ | T(k,k) = T(k+1,k+1) = · · · = T(k+i,k+i) }. Then Ak,i is not
an ideal.

(3) Let D = { A ∈ AlgL∞ | A is a diagonal operator. }. Then D is not an
ideal of AlgL∞.

Example 4. Let Ω be a nonempty subset of N and letAΩ = { T ∈AlgL∞ | T(i,i) =
T(j,j) for i, j ∈ Ω and for all T ∈ A }. Then AΩ is a Lie ideal but not an ideal
in AlgL∞.

Example 5.

(1) Let k be a fixed natural number and let A0, {k} = { T ∈ A0 | T(2k−1,2k)

= 0 }. Then A0, {k} is an ideal in AlgL∞.
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(2) Let n be a fixed natural number and Γ = {k1, k2, · · · , kn} (n > 1).
A0,Γ = { T ∈ A0 | T(2ki−1,2ki) = 0, ki ∈ Γ }. Then A0,Γ is an ideal in
AlgL∞.

(3) Let k1, k2, · · · be natural numbers and Ω = {k1, k2, · · · }. Let A0,Ω =
{ T ∈ A0 | T(2ki−1,2ki) = 0, ki ∈ Ω }. Then A0,Ω is an ideal in AlgL∞.

Example 6.

(1) Let j be a fixed natural number and let B0, {j} = { T ∈ A0 | T(2j+1,2j)

= 0 }. Then B0, {j} is an ideal in AlgL∞.
(2) Let m be a fixed natural number and let Γ = {j1, j2, · · · , jm} (m > 1).

Let B0,Γ = { T ∈ A0 | T(2ji+1,2ji) = 0, ji ∈ Γ }. Then B0,Γ is an ideal in
AlgL∞.

(3) Let j1, j2, · · · be natural numbers and let Ω = {j1, j2, · · · }. Let B0,Ω =
{ T ∈ A0 | T(2ji+1,2ji) = 0, ji ∈ Ω }. Then A0,Ω is an ideal in AlgL∞.

Example 7.

(1) Let k and j be fixed natural numbers. Then C0,{k,j} = { T ∈ A0 | T(2k−1,2k)

= 0, T(2j+1,2j) = 0 } is an ideal in AlgL∞.
(2) Let {k1, k2, · · · , kn} and {j1, j2, · · · , jm} be subsets of N and let Γ =

{ki, jl | i = 1, 2, · · · , n, l = 1, 2, · · · ,m}. Then C0,Γ = { T ∈ A0 | T(2ki−1,2ki)

= 0, T(2jl+1,2jl) = 0, ki, jl ∈ Γ } is an ideal in AlgL∞.
(3) Let {k1, k2, · · · } and {j1, j2, · · · } be subsets of N and let Ω = {ki, jl | i =

1, 2, · · · , l = 1, 2, · · · }. Then C0,Ω = { T ∈ A0 | T(2ki−1,2ki) = 0, T(2jl+1,2jl)

= 0, ki, jl ∈ Ω } is an ideal in AlgL∞.

Example 8.

(1) Let k be a fixed natural number. Let A = { T ∈ AlgL∞ | T(2k−1,2k) = 0 }.
Then A is not an ideal in AlgL∞.

(2) Let k be a fixed natural number. Let A2,{k} = { T ∈ AlgL∞ | T(2k−1,2k) =

0, T(2k,2k) = T(2k−1,2k−1) = 0 }. Then A2,{k} is an ideal in AlgL∞.
(3) Let n be a fixed natural number and let Γ = {k1, k2, · · · , kn} (n > 1).

Let A2,Γ = { T ∈ AlgL∞ | T(2ki−1,2ki) = 0, T(2ki−1,2ki−1) = T(2ki,2ki) =

0, ki ∈ Γ }. Then A2,Γ is an ideal in AlgL∞.
(4) Let k1, k2, · · · be a subset of N and let Ω = {k1, k2, · · · }. Let A2,Ω =

{ T ∈ AlgL∞ | T(2ki−1,2ki) = 0, T(2ki−1,2ki−1) = T(2ki,2ki) = 0, ki ∈ Ω }. Then
A2,Ω is an ideal in AlgL∞.

Example 9.

(1) Let j be a fixed natural number. Let B = { T ∈ AlgL∞ | T(2j+1,2j) =
0 }. Then B is not an ideal in AlgL∞.

(2) Let j be a fixed natural number. Let B2,{j} = { T ∈ AlgL∞ | T(2j+1,2j)

= 0, T(2j,2j) = T(2j+1,2j+1) = 0 }. Then B2,{j} is an ideal in AlgL∞.
(3) Let m be a fixed natural number and let Γ = {j1, j2, · · · , jm} (m > 1)

be a subset of N. Let B2,Γ = { T ∈ AlgL∞ | T(2jl+1,2jl) = 0, T(2jl,2jl) =
T(2jl+1,2jl+1) = 0, jl ∈ Γ }. Then B2,Γ is an ideal in AlgL∞.
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(4) Let j1, j2, · · · be a subsets of N and letΩ = {j1, j2, · · · }. Let B2,Ω = { T ∈
AlgL∞ | T(2jl+1,2jl) = 0, T(2jl,2jl) = T(2jl+1,2jl+1) = 0, jl ∈ Ω }. Then B2,Ω is
an ideal in AlgL∞.

Example 10.

(1) Let k and j be fixed natural numbers. Then C2, {k,j} = { T ∈ AlgL∞
| T(2k−1,2k) = 0, T(2j+1,2j) = 0, T(2k−1,2k−1) = T(2k,2k) = 0, T(2j,2j) =
T(2j+1,2j+1) = 0} is an ideal of AlgL∞.

(2) Let {k1, k2, · · · , kn} and {j1, j2, · · · , jm} be subsets of N and let Γ =
{ki, jl | i = 1, 2, · · · , n, l = 1, 2, · · · ,m}. Then C2,Γ = { T ∈ AlgL∞
| T(2ki−1,2ki) = 0, T(2jl+1,2jl) = 0, T(2ki−1,2ki−1) = T(2ki,2ki) =
0, T(2jl,2jl) = T(2jl+1,2jl+1) = 0, ki, jl ∈ Γ } is an ideal of AlgL∞.

(3) Let {k1, k2, · · · } and {j1, j2, · · · } be subsets of N and let Ω = {ki, jl | i =
1, 2, · · · , l = 1, 2, · · · }. Then C2,Ω = { T ∈ AlgL∞ | T(2ki−1,2ki) =
0, T(2jl+1,2jl) = 0, T(2ki−1,2ki−1) = T(2ki,2ki) = 0, T(2jl,2jl) =
T(2jl+1,2jl+1) = 0, ki, jl ∈ Ω } is an ideal of AlgL∞.

3. Properties of ideals in AlgL∞

In this section we investigate some properties of ideals of AlgL∞. If J = { k }
for a fixed natural number k, we denote AJ by A{k}.

Theorem 1. Let k be a fixed natural number. Then
(1) A{k} is prime and (2) A{k} is maximal.

Proof. (1) Let A = (aij) and let T = (tij) be operators in AlgL∞. Let AT be
in A{k}. Since (AT )kk = akktkk = 0, akk = 0 or tkk = 0. So A is in A{k} or T
is in A{k}.

(2) It is sufficient to show that the case k=1. Let A be an ideal of AlgL∞
such that A{1} ⊂ A ⊂ AlgA∞. Suppose that there exists T = (tij) in A such
that t11 ̸= 0. Let S = (sij) be an element of AlgA∞. If s11 = 0, then S ∈ A{1}.
Let s11 ̸= 0. Let A = (aij) be an operator defined by{

a11 = 0

aij = −tij otherwise.

Then A + T is an operator in A. Put A1 = A + T . Then A1(1,1) = t11 and
A1(i,j) = 0 if (i, j) ̸= (1, 1). Let B = (bij) be an operator defined by{

b11 = 0

bij = sij otherwise.

Then B is an element of A{1}. Put x = s11
t11

. Then B+xA1 = S is an operator
of A. Hence A = AlgL∞. �

Theorem 2. Let A be a subalgebra of AlgL∞. Let k be a fixed natural number
and let A2,{k} ⊂ A ⊂ { T ∈ AlgL∞ | T(2k−1,2k) = 0 }. Then A is an ideal of
AlgA∞ if and only if A = A2,{k}.
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Proof. Let A = (aij) be an operator in AlgL∞ and let T = (tij) be an operator
in A. Suppose that A is an ideal of AlgA∞. Then the (2k − 1, 2k)-component
of AT is

a2k−1 2k−1t2k−1 2k + a2k−1 2kt2k 2k = a2k−1 2kt2k 2k = 0 (∗)
Since (*) holds for all A in AlgL∞, t2k 2k = 0. Also the (2k − 1, 2k)-component
of TA is

t2k−1 2k−1a2k−1 2k + t2k−1 2ka2k 2k = t2k−1 2k−1a2k−1 2k = 0 (∗∗)
Since (**) holds for all A in AlgL∞, t2k−1 2k−1 = 0. Hence A⊂ A2, {k} and
A = A2, {k}. Suppose that A = A2,{k}. Then A is an ideal of AlgL∞ by
Example 8-(2). �
Theorem 3. Let j be a fixed natural number and let B be a subalgebra of AlgL∞
such that B2,{j}⊂ B ⊂ { T ∈ AlgL∞ | T(2j+1,2j) = 0 }. Then B is an ideal of
AlgL∞ if and only if B = B2,{j}.

Proof. Let A = (aij) be an operator in AlgL∞ and let T = (tij) be an operator
in B. Suppose that B is an ideal of AlgA∞. Then the (2j +1, 2j)-component of
AT is

a2j+1 2j+1t2j+1 2j + a2j+1 2jt2j 2j = a2j+1 2jt2j 2j = 0 (∗)
Since (∗) holds for all A in AlgL∞, t2j 2j = 0. Also the (2j + 1, 2j)-component
of TA is

t2j+1 2j+1a2j+1 2j + t2j+1 2ja2j 2j = t2j+1 2j+1a2j+1 2j = 0 (∗∗)
Since (∗∗) holds for all A in AlgL∞, t2j+1 2j+1 = 0. Hence T ∈ B2,{j} and so
B ⊂ B2,{j}. Thus B = B2,{j}. Assume that B = B2,{j}. Then B is an ideal of
AlgL∞ by Example 9-(2). �
Theorem 4. Let k be a fixed natural number and let A be a subalgebra of AlgL∞
such that A{k,k+1} ⊂ A ⊂ A{k}. Then A is an ideal of AlgL∞ if and only if
A = A{k,k+1} or A = A{k}.

Proof. It is sufficient to show that the case k = 1. Let A be an ideal of AlgL∞.
Suppose that A ̸= A{1,2}. Then there exists an element T = (tij) in A and
T /∈ A{1,2}. Then t22 ̸= 0. Let A = (aij) be an element of A{1}. If a22 = 0, then
A ∈ A{1,2} and so A ∈ A. Let a22 ̸= 0. Define an operator B = (bij) by{

b11 = 0, b22 = 0

bij = −tij otherwise.

Then B ∈ A. Put B + T = D. Then D ∈ A. Put x = a22

t22
. Then xD ∈ A. Let

S = (sij) be an operator defined by{
s22 = 0

sij = aij otherwise.

Then S ∈ A{1,2} and hence A = S + xD ∈ A. �
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Theorem 5. Let k be a fixed natural number and let A be a subalgebra of AlgL∞
such that { S ∈ AlgL∞ | S(2k−1,2k) = 0 }⊂ A ⊂ AlgL∞. Then A is an ideal of
AlgL∞ if and only if A = AlgL∞.

Proof. It is sufficient to show that the case k = 2. Let A is an ideal of AlgL∞.
Since { S ∈ AlgL∞ | S(3,4) = 0 } is not an ideal of AlgL∞, there exists
T = (tij) ∈ A such that t34 ̸= 0. Let A = (aij) be an operator in AlgL∞. If
a34 = 0, then A ∈ A. Let a34 ̸= 0. Let S = (sij) be an operator defined by{

s34 = 0

sij = −tij otherwise.

Then S ∈ A. So S + T ∈ A. Put D = S + T . Define an operator B = (bij) by{
b34 = 0

bij = aij otherwise.

Then B ∈ A. Put x = a34

t34
. Then B + xD = A ∈ A. �

Theorem 6. Let j be a fixed natural number and let B be a subalgebra of AlgL∞
such that {T ∈ AlgL∞ | T(2j+1,2j) = 0} ⊂ B ⊂ AlgL∞. Then B is an ideal of
AlgL∞ if and only if B = AlgL∞.

Proof. It is sufficient to show that j = 1. Let B be an ideal of AlgL∞. Since
{ T ∈ AlgL∞ | T(3,2) = 0 } is not an ideal of AlgL∞, there exists T = (tij) in
B such that t32 ̸= 0. Let A = (aij) be an operator in AlgL∞. If a32 = 0, then
A ∈ B. Let a32 ̸= 0. Let S = (sij) be an operator defined by{

s32 = 0

sij = −tij otherwise.

Then S ∈ B. So S + T ∈ B. Put S + T = D. Define an operator B = (bij) by{
b32 = 0

bij = aij otherwise.

Then B ∈ B. Put x = a32

t32
. Then B + xD = A ∈ B. �

Theorem 7. Let Γ = {k1, k2} be a subset of N such that k1 � k2. Let A be a
subalgebra of AlgL∞ such that A2,Γ ⊂ A ⊂ { T ∈ AlgL∞ | T(2ki−1,2ki) = 0, i =
1, 2 }. Then A is an ideal of AlgL∞ if and only if A = A2,Γ.

Proof. Let A is an ideal of AlgL∞ and let T = (tij) be an operator in A. Then
T(2ki−1,2ki) = 0, i = 1, 2. Since A is an ideal of AlgA∞, T(2ki−1,2ki−1) = 0 =
T(2ki,2ki)(i = 1, 2) by Theorem 2. So A ⊂ A2,Γ. Hence A = A2,Γ. �

Theorem 8. Let Γ = {k1, k2} be a subset of N such that k1 � k2. Let A be a
subalgebra of AlgL∞ such that A2,Γ ⊂ A ⊂ B, where B = A2,{k1}∩A{2k2−1,2k2}.
Then A is an ideal of AlgL∞ if and only if A = A2,Γ or A = B.
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Proof. It is sufficient to show that Γ = {k1, k2} = {2, 3}. Let A be an ideal of
AlgL∞ and A ̸= A2,Γ. Then there exists an element T ∈ A such that T /∈ A2,Γ,
i.e. T(5,6) ̸= 0. Let A = (aij) ∈ B. If a56 = 0, then A ∈ A2,Γ and so A ∈ A. Let
a56 ̸= 0. Let S = (sij) be an operator defined by{

s56 = 0

sij = −tij otherwise.

Then S ∈ A2,Γ and so S ∈ A. Put S + T = A1. Then A1 is an operator of A.
Let B = (bij) be an operator defined by{

b56 = 0

bij = aij otherwise.

Then B ∈ A2,Γ. Put x = a56

t56
. Then A = B + xA1 ∈ A. Hence A = B. �

Theorem 9. Let n be a fixed natural number(n > 1) and let Γ = {j1, j2} be a
subset of N such that j1 � j2. Let B be a subalgebra of AlgL∞ such that B2,Γ ⊂ B
⊂ { T ∈ AlgL∞ | T(2ji+1,2ji) = 0, i = 1, 2 }. Then B is an ideal of AlgL∞ if
and only if B = B2,Γ.

Proof. Let B be an ideal of AlgL∞ and let A = (aij) ∈ B. Then a2ji+1 2ji =
0(i = 1, 2). Since B is an ideal, a2ji 2ji = 0 = a2ji+1 2ji+1 for all ji ∈ Γ by
Theorem 2. Hence A ∈ B2,Γ. �

Theorem 10. Let Γ = {j1, j2} be a subset of natural numbers. Let B = B2,{j1}∩
A{2j2,2j2+1}. Let A be a subalgebra of AlgL∞ such that B2,Γ ⊂ A ⊂ B. Then A
is an ideal of AlgL∞ if and only if A = B2,Γ or A = B.

Proof. Let A be an ideal of AlgL∞ and let A ̸= B2,Γ. Then there exists an
operator T = (tij) such that T ∈ A and T /∈ B2,Γ, i.e. t(2j2+1 2j2) ̸= 0. Let
A = (aij) ∈ B. If a2j2+1 2j2 = 0, then A ∈ A. Let a2j2+1 2j2 ̸= 0. Define an
operator B = (bij) by {

b2j2+1 2j2 = 0

bij = −tij otherwise.

Then B ∈ A and B+T ∈ A. Put D = B+T and α =
a2j2+1 2j2

t2j2+1 2j2
. Then αD ∈ A.

Define an operator T1 by {
T1(2j2+1,2j2) = 0

T1(i,j) = aij otherwise.

Then T1 ∈ A. So αD + T1 = A ∈ A. Hence A = B. �

Theorem 11. Let k and j be fixed natural numbers. Let C be a subalgebra of
AlgL∞ such that C2, {k,j } ⊂ C ⊂ B = { T ∈ AlgL∞ | T(2k−1,2k) = 0, T(2j+1,2j) =
0 }. Then C is an ideal of AlgL∞ if and only if C = C2,{k,j}.
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Proof. Let C be an ideal of AlgL∞ and let A ∈ C. Since C ⊂ B, A ∈ B, i.e.
A(2k−1,2k) = 0, A(2j+1,2j) = 0. Since C is an ideal, A(2k−1,2k−1) = 0, A(2k,2k) =
0, A(2j,2j) = 0, A(2j+1,2j+1) = 0 by Theorem 3. So A ∈ C2,{k,j}. Hence C =
C2,{k,j}. �

Theorem 12. Let k be a fixed natural number and let A be a subalgebra of
AlgL∞ such that A0,{k} ⊂ A ⊂ A0. Then A is an ideal of AlgA∞ if and only if
A = A0,{k} or A = A0.

Proof. Let A be an ideal of AlgL∞. It is sufficient to show that the case k = 1,
i.e. if A0,{1} ⊂ A ⊂ A0, then A = A0,{1} or A = A0. Assume that A ̸= A0,{1}.
Then there exists T = (tij) in A such that T /∈ A0,{1}. Then t12 ̸= 0 and tii = 0
for all i ∈ N. Let A = (aij) be an element of A0. If a12 = 0, A ∈ A0,{1} ⊂ A. If
a12 ̸= 0, let A1 be an operator defined by{

A1(1,2) = 0

A1(i,j) = aij otherwise.

Then A1 ∈ A0,{1} ⊂ A. Let T1 be an operator defined by{
T1(1,2) = 0

T1(i,j) = −tij otherwise.

Then T1 ∈ A0,{1} ⊂ A. Let T2 = T + T1 ∈ A. Then T2(1,2) = t12 and T2(i,j) = 0
for (i, j) ̸= (1, 2). Let x = a12

t12
. Then xT2 +A1 = A ∈ A. Hence A = A0. �

Theorem 13. Let Γ = {k1, k2} and let A be a subalgebra of AlgL∞ such that
A0,Γ ⊂ A ⊂ A0,{ki} i = 1 or i = 2. Then A is an ideal of AlgA∞ if and only if
A = A0,Γ or A = A0,{ki}.

Proof. Let A be an ideal of AlgL∞. It is sufficient to show that the case k1 = 1,
k2 = 2, ki = 1. Suppose that A ̸= A0,{1,2}. Then there exists an element
T = (tij) in A and T /∈ A0,{1,2}. Then t34 ̸= 0. Let A = (aij) be an element
of A0,{1}. If a34 = 0, then A ∈ A0,{1,2} and so A ∈ A. Let a34 ̸= 0. Define an
operator S = (sij) by {

s12 = 0, s34 = 0

sij = −tij otherwise.

Then S ∈ A0,{1,2}. Put S + T = A1. Then A1 ∈ A. Put x = a34

t34
. Then

xA1 ∈ A. Define an operator B = (bij) by{
b12 = 0, b34 = 0, bii = 0

bij = aij otherwise.

Then B ∈ A0,{1,2} and hence B + xA1 = A ∈ A. So A = A0,{1}. �

Theorem 14. Let k be a fixed natural number and A be a subalgebra of AlgL∞
such that A2,{k} ⊂ A ⊂ A{2k−1,2k}. Then A is an ideal of AlgL∞ if and only if
A = A2,{k} or A = A{2k−1,2k}.
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Proof. Let A be an ideal of AlgL∞. It is sufficient to show that the case k = 1.
i.e. if A2,{1} ⊂ A ⊂ A{1,2}, then A = A2,{1} or A = A{1,2}. Assume that
A ̸= A2,{1}. Then there exists T = (tij) in A such that T /∈ A2,{1}. Then
t12 ̸= 0 and t11 = 0 and t22 = 0. Let A = (aij) be an element of A{1,2}. If
a12 = 0, A ∈ A2,{1} ⊂ A. If a12 ̸= 0, let A1 be an operator defined by{

A1(1,2) = 0

A1(i,j) = aij otherwise.

Then A1 ∈ A2,{1} ⊂ A. Let T1 be an operator defined by{
T1(1,2) = 0

T1(i,j) = −tij otherwise.

Then T1 ∈ A2,{1} ⊂ A. Let T2 = T + T1 ∈ A. Then T2(1,2) = t12 and T2(i,j) = 0
for (i, j) ̸= (1, 2). Let x = a12

t12
. Then xT2+A1 = A ∈ A. HenceA = A {1,2 }. �

If we modify the proof of Theorem 14, then we can prove the following The-
orem.

Theorem 15. Let j be a fixed natural number and let A be a subalgebra of
AlgL∞ such that B2,{j} ⊂ A ⊂ A{2j,2j+1}. Then A is an ideal of AlgL∞ if and
only if A = B2,{j} or A = A{2j,2j+1}.

Theorem 16. Let Γ = {j1, j2} and let B be a subalgebra of AlgL∞ such that
B0,Γ ⊂ B ⊂ B0,{ji} i = 1 or i = 2. Then B is an ideal of AlgA∞ if and only if
B = B0,Γ or B = B0,{ji}.

Proof. Let B be an ideal of AlgL∞. It is sufficient to show that the case j1 = 1,
j2 = 2 and ji = 2. Let B0,Γ ⊂ B ⊂ B0,{2}. Suppose that B ≠ B0,Γ. Then there
exists an element T = (tij) in B and T /∈ B0,Γ. Then t32 ̸= 0. Let A = (aij)
be an element of B0,{2}. If a32 = 0, then A ∈ B0,Γ and so A ∈ B. Let a32 ̸= 0.
Define an operator B = (bij) by{

b32 = 0, b54 = 0

bij = −tij otherwise.

Then B ∈ B0,Γ. Put B + T = A1. Then A1 ∈ B. Put x = a32

t32
. Then xA1 ∈ B.

Let S = (sij) be an operator defined by{
s32 = 0, s54 = 0, sii = 0

sij = aij otherwise.

Then S ∈ B0,Γ and hence S + xA1 = A ∈ B. So B = B0,{2}. �

If we repeat the proof of the Theorem 12 and the Theorem 13, then we can
get the following theorem.

Theorem 17. Let k, j be natural numbers and Ω1,1 = { k, j }.
i) Let C be a subalgebra of AlgL∞ such that C0,Ω1,1 ⊂ C ⊂ C0,Ω1, , where

C0,Ω1,1 = { T ∈ A0 | T(2k−1,2k) = 0 = T(2j+1,2j) } and C0,Ω1, = { T ∈
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A0 | T(2k−1,2k) = 0 }. Then C is an ideal of AlgL∞ if and only if C = C0,Ω1,1 or
C = C0,Ω1, .

ii) Let C be a subalgebra of AlgL∞ such that C0,Ω1,1 ⊂ C ⊂ C0,Ω,1 . Then C is
an ideal of AlgL∞ if and only if C = C0,Ω1,1 or C = C0,Ω,1 .

Let Λ and Γ be nonempty subsets of N and A2,Γ ∩ AΛ will be denoted by
A2,Γ,Λ. And we will prove only one case of relationships between ideals of A2,Γ,Λ.
The other relations will be proved by the same way.

Theorem 18. Let Γ = {k1, k2} = {1, 2} and Λ = {3, 4}. Let A be a subalgebra
of AlgL∞ such that A2,Γ ⊂ A ⊂ A2,{1},{3,4}. Then A is an ideal of AlgL∞ if
and only if A = A2,Γ or A = A2,{1},{3,4}.

Proof. Let A be an ideal of AlgL∞ and A ̸= A2,Γ. Then there exists an element
T = (tij) ∈ A and T = (tij) /∈ A2,Γ, i.e. t34 ̸= 0. Let A = (aij) be an element of
A2,{1},{3,4}. If a34 = 0, then A ∈ A2,Γ and so A ∈ A. If a34 ̸= 0, we let define
an operator S = (sij) by{

s11 = 0, s12 = 0, s22 = 0, s33 = 0, s34 = 0, s44 = 0

sij = −tij otherwise.

Then S ∈ A2,Γ and so S ∈ A. We define an operator B = (bij) by{
b11 = 0, b12 = 0, b22 = 0, b33 = 0, b34 = 0, b44 = 0

bij = aij otherwise.

Then B ∈ A. Put D = S + T and x = a34

t34
. Then A = B + xD ∈ A. Hence

A = A2,{1},{1,4}. �

If we denote B2,Γ ∩ BΛ by B2,Γ,Λ and C2,Γ ∩ CΛ by C2,Γ,Λ, then we will prove
relationships between ideals B2,Γ,Λ and C2,Γ,Λ by modifying the method of the
proof of Theorem 15.

Theorem 19. Let ki be natural numbers such that ki � ki+1, i = 1, 2, · · · . Let
Γ1 = {k1}, Γ2 = {k1, k2}, · · · ,Γn = {k1, k2, · · · , kn} and Γ = {k1, k2, · · · }. Then

A0,Γ ⊂ · · · ⊂ A0,Γn ⊂ A0,Γn−1 ⊂ · · · ⊂ A0,Γ2 ⊂ A0,Γ1 = A0,{k1}
A2,Γ ⊂ · · · ⊂ A2,Γn ⊂ A2,Γn−1 ⊂ · · · ⊂ A2,Γ2 ⊂ A2,Γ1 = A2,{k1}
B0,Γ ⊂ · · · ⊂ B0,Γn ⊂ B0,Γn−1 ⊂ · · · ⊂ B0,Γ2 ⊂ B0,Γ1 = B0,{k1}
B2,Γ ⊂ · · · ⊂ B2,Γn ⊂ B2,Γn−1 ⊂ · · · ⊂ B2,Γ2 ⊂ B2,Γ1 = B2,{k1}
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