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ANALYSIS OF COMPLEMENTED GROUP CA DERIVED
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Abstract. In recent years, CA has been applied to image security due to

its simple and regular structure, local interaction and random-like behavior.
Since the initial state is regenerated after some iterations in the group CA,
the receiver is able to decrypt by the same CA. Pries et al. showed that the
all lengths of the cycles in the complemented group CA C with rules 195,

153, and 51 are equal to the order ofC. Nandi et al. reported the encryption
technique using C. These results can be made efficient use in cryptosystem
by expanding the Nandi’s key space. In this paper, we analyze the order
of the complemented group CA derived from 90/150 group CA and show

that all the lengths of the cycles in the complemented CA are equal to the
order of the complemented CA.
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1. Introduction

The concept of cellular automata(henceforth CA) was originally discovered
in the 1940s by Ulam and von Neumann who suggested using a discrete system
for creating a reductionist model of self-replication [10, 13]. In 1960s, CA were
studied as a particular type of dynamical system and the connection with the
mathematical field of symbolic dynamics [6]. In 1980s, Wolfram engaged in a
systematic study of one-dimensional CA and claimed that CA have applications
in many fields of science. These include computer processors and cryptography
[14]. Applications of CA in various fields have been proposed in [8, 11].

In recent years, CA has also been applied to image security due to its simple
and regular structure, local interaction and random-like behavior [1, 7]. In the
case of the group CA, information is preserved during the iteration. With this
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property, group CA can be made full use in cryptosystem. The CA rule is the
key and the final configuration which is obtained by forward iteration of the CA
for fixed time steps is an encrypted image.

In the group CA, since the initial state is regenerated after some iterations,
the receiver is able to decrypt by the same CA. It was already known that the
complemented CA derived from a group CA is also a group CA.

Pries et al.[11] showed that the all lengths of the cycles in the complemented
group CA C with rules 195, 153, and 51 are equal to the order of C. And
Nandi et al. reported the encryption technique using C in [9]. They also used
F = (11 · · · 1)t as the complement vector to derive the complemented CA.

But if we use the rules 90 and 150 to generate the next state of each cell, the
randomness is more strong since the dependency of the next state to its neighbor
of the present state is higher than the dependency by the rules 60, 102, and 204.
And we can use the results of Cho et al. to synthesize the CA according to the
minimal polynomial [2, 3, 4].

In this paper, we analyze the order of the complemented group CA derived
from 90/150 group CA and find the complement vectors F such that the all
lengths of cycles are equal to the order of the complemented group CA derived
from 90/150 group CA and F .

2. Preliminaries

CA consist of cells on a line where each cell has two possible values 0 or 1.
Each configuration of CA evolves in discrete time steps and the next state is
decided by the cell to its left, the cell itself, and the cell to its right, according
to the combinational logic known as a rule. The next state transition function
can be expressed as follows;

xi(t+ 1) = f(xi−1(t), xi(t), xi+1(t)),

where xi(t) is the ith cell at the tth time step and f is a rule of the CA. Since
there are 23 possible states for the three cells neighboring a given cell, there are

22
3

distinct mappings from all these neighborhood configurations to the next
state, each of which can be indexed with an 8-bit binary number. For example,

xi−1(t)xi(t)xi+1(t) : 111 110 101 100 011 010 001 000
xi(t+ 1) : 0 1 0 1 1 0 1 0 (Rule 90)
xi(t+ 1) : 1 0 0 1 0 1 1 0 (Rule 150)

The corresponding logic for rule 90 is xi(t + 1) = xi−1(t) ⊕ xi+1(t) and for
rule 150 is xi(t+ 1) = xi−1(t)⊕ xi(t)⊕ xi+1(t).

A CA having only XOR logic is called a linear CA and the corresponding
rule is called a linear rule. In the case of the rules involving XNOR logic,
the CA is called a complemented CA and the corresponding rule is called a
complemented rule. In this paper, we will employ the rule 90, rule 150 and the
null boundary conditions in which the boundary of the extreme cells is imposed
as all 0(henceforth NBCA).
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An n-cell linear CA is specified by n × n state transition matrix operating
over GF(2) which can be represented as the following tridiagonal matrix[5].

d1 a1,2 0 · · · 0 0
a2,1 d2 a2,3 · · · 0 0
0 a3,2 d3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an,n−1 dn


In the matrix, the principal diagonal specifies the self-dependency if the next

state of the ith cell depends on its present state. The other two diagonals specify
the dependency of the corresponding cell on its left and right neighbors. Since
all the entries in the other two diagonals of the state transition matrix are 1 for
the rules 90 and 150, we abbreviate the matrix T as Tn = ⟨d1, d2, d3, · · ·, dn⟩,
where each di is 0 or 1. That is, if the rule for the ith cell is rule 150, then
di = 1. Similarly di = 0 represents the rule 90 for the rule of the ith cell. So
Tn can also represent the rule vector for the CA. If X(t) stands for the state
of the CA at the tth instant of time, then the state X(t + 1) at the next time
instant can be represented as X(t+ 1) = TX(t). Since the XNOR logic cannot
be represented in the multiplicative notation, the state transition funcion for
the complemented CA is symbolically represented as T̄ for the state transition
matrix T of the corresponding CA with XOR logic only. Thus the next state
of the complemented CA is X(t+ 1) = TX(t)⊕ F , where F is the complement
vector which has significant entries in places of the cell positions where the
inversion is required.

Lemma 2.1 ([5]). If T̄ p denotes p times application of the complemented CA
operator T̄ , then T̄ pX(t) =

(
I⊕T⊕T 2⊕· · ·⊕T p−1

)
F⊕T pX(t), where F is the

complement vector.

The characteristic polynomial of a matrix T is given by |T ⊕ xI| and the
minimal polynomial of T is the minimum degree factor of the characteristic
polynomial that is annihilated by T . In general, the characteristic polynomial
is different from the minimal polynomial for a matrix. However for the state
transition matrix T of the rules 90 and 150, the two polynomials are identical
[12].

Definition 2.2. A CA is called a group CA if det(T ) = 1, where T is the state
transition matrix for the CA and det(T ) is the determinant of T . In a group
CA, all states of the CA form cycles. And for a positive integer m, Tm = I
where I is the identity matrix.

Das et al. [5] reported that the complement of a group CA is also a group
CA. And Pries et al. [11] investigated the order of the complemented group
CA derived from the group CA with rules 195, 153, and 51. We analyze the
relation between the orders of the complemented CA and the corresponding non-
complemented 90/150 group NBCA. And we show the structure of the cycles in
the complemented group CA.
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Theorem 2.3 ([2]). For the 90/150 k-cell group CA, let Tk = ⟨d1, d2, · · ·, dk⟩
be the rule vector for the CA, where di = 0 for the rule 90 and di = 1 for the
rule 150 at the ith cell. Then the followings hold :

(1) ⟨d1, d2, · · ·, dk ⊕ 1, dk ⊕ 1, · · ·, d2, d1⟩ is a 2k-cell group CA with the min-
imal polynomial (x+ 1)2k.

(2) ⟨d1, d2, · · ·, dk, 1, dk, · · ·, d2, d1⟩ is a 2k+1-cell group CA with the minimal
polynomial (x+ 1)2k+1.

3. The Structure of the Complemented CA

Lemma 3.1. For the state transition matrix T of the n-cell group NBCA C
with the minimal polynomial mT (x) = (1 + x)n, 2r−1 < n ≤ 2r (r = 2, 3, 4, · · · ),
let T̄ be the state transition function of the complemented group CA C̄ derived
from C and the complement vector F = (f1f2· · ·fn)t, fi = 0 or 1 (1 ≤ i ≤ n).
Then ord(T ) ≤ ord(T̄ ), where ord(T) is the order of T.

Proof. If ord(T ) = p and ord(T̄ ) = k, then p = 2r from 2r−1 < n ≤ 2r.
Suppose that k = p

2 , then k = 2r−1 and for all the states X in C, T̄ kX = X.

So T̄ kX =
(
I⊕T⊕T 2⊕· · ·⊕T k−1

)
F⊕T kX. Then

(
I ⊕ T⊕T 2⊕· · ·⊕T k−1

)
F =

(I ⊕ T )
k−1

F =
(
I⊕T k

)
X = (I⊕T )

k
X.

Since rank
(
(I ⊕ T )

k
)
= n−k, dimN

(
(I ⊕ T )

k
)
= k and thus N

(
(I ⊕ T )k−1

)
⊂ N

(
(I ⊕ T )k

)
, where N(A) is the null space of A.

(i) If F ∈ N
(
(I ⊕ T )

k−1
)
, then (I ⊕ T )

k−1
F = 0 but (I ⊕ T )

k
X ̸= 0 for

X /∈ N
(
(I ⊕ T )

k
)
. This is a contradiction.

(ii) If F ∈ N
(
(I ⊕ T )

k
)
\ N

(
(I ⊕ T )

k−1
)
, then (I ⊕ T )

k−1
F ̸= 0 but

(I ⊕ T )
k
X = 0 for X = F . This is a contradiction.

(iii) If F /∈ N
(
(I ⊕ T )

k
)
, then (I ⊕ T )

k−1
F ̸= 0 but (I ⊕ T )

k
X = 0 for

X ∈ N
(
(I ⊕ T )

k−1
)
. This is a contradiction.

By (i), (ii) and (iii), (I ⊕ T )
k−1

F ̸= (I⊕T )
k
X. So ord(T̄ ) > p

2 and thus

ord(T̄ ) ≥ p. �

The following lemma can be proved by Lemma 3.1 and the proof of Lemma
4.5.1 in [5].

Lemma 3.2. For the state transition matrix T of the n-cell group NBCA C
with the minimal polynomial (1 + x)

n
, 2r−1 < n ≤ 2r (r = 2, 3, 4, · · ·), let T̄ be

the state transition function of the complemented group CA C̄ derived from C
with the complement vector F = (f1f2f3· · ·fn)t, fi = 0 or 1 (1 ≤ i ≤ n). If
ord(T ) = p, then ord(T̄ ) = p or ord(T̄ ) = 2p.

The following theorem is very important for the results in this paper.
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Theorem 3.3. For the state transition matrix Tn of the n-cell 90/150 group
NBCA C with the minimal polynomial (1 + x)

n
, n = 2, 3, · · ·, let Sn = (I ⊕ Tn)

n−1.

Then the matrices S2n and S2n+1 can be obtained from Sn as followings;

S2n =

(
Sn Sn

Sn Sn

)
and S2n+1 =

 Sn 0n Sn

0n
t 0 0n

t

Sn 0n Sn

 ,

where 0n is the n× 1 zero matrix.

Proof. For the case of n = 2, we can easily confirm the theorem.
For the case of n = k, let ⟨r1, r2, · · ·, rk⟩ be the rule vector of I ⊕ Tk. Then

⟨r1, · · ·, rk−1, r̄k, r̄k, rk−1, · · ·, r1⟩ is the rule vector of I ⊕ T2k by Theorem 2.3.

Let Sk =


A1

A2

...
Ak

 and S2k =


B1

B2

...
B2k

, where Ai (resp.Bi) is the ith row of

Sk (resp.S2k) for 1 ≤ i ≤ k. Since (I ⊕ Tk)Sk = Ok and (I ⊕ T2k)S2k = O2k,
r1A1 +A2 = O,
A1 + r2A2 +A3 = O,

...
Ak−2 + rk−1Ak−1 +Ak = O

(3.1)

and 

r1B1 +B2 = O,
B1 + r2B2 +B3 = O,

...
Bk−2 + rk−1Bk−1 +Bk = O,
Bk−1 + r̄kBk +Bk+1 = O,
Bk + r̄kBk+1 +Bk+2 = O,

...
B2k−1 + r1B2k = O

(3.2)

Since rank (I ⊕ Tk) = k − 1, the relation of Ai (i = 1, 2, · · · , k) is determined
by the first (k − 1) equations of (3.1). Thus the relation of Bi (i = 1, 2, · · · , k)
is determined by the first (k − 1) equations of (3.2).

Let Sk = (U1U2 · · ·Uk) and S2k = (V1V2 · · ·V2k). Since Sk (I ⊕ Tk) = Ok and
S2k (I ⊕ T2k) = O2k, we can show that the relation of Vi is equal to the relation

of Ui by the similar method for i = 1, 2, · · · , k. Let S2k =

(
W1 W2

W3 W4

)
, where

Wi is a k×k submatrix. ThenW1 = Sk. By the same reason, we obtainW4 = Sk.

From rank (Sk) = 1, we obtain W2 = W3 = Sk. Hence S2k =

(
Sk Sk

Sk Sk

)
.

In the case of S2k+1 = (I ⊕ T2k+1)
2k
, the rule vector of I⊕T2k+1 is ⟨r1, · · ·, rk−1

, rk, 0, rk, rk−1, · · ·, r1⟩ from Theorem 2.3. If Yi is the ith row of S2k+1 for 1 ≤
i ≤ k , then Yl = Yk+l+1 for 1 ≤ l ≤ k, since ⟨r1, · · ·, rk−1, rk, 0, rk, rk−1, · · ·, r1⟩
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is symmetric with respect to the center and (I ⊕ T2k+1)S2k+1 = O2k+1. More-
over the first k entries of Yi and the last k entries of Yk+1+i are equal to the first
k entries of the ith row of Sk for 1 ≤ i ≤ k.

Since rank (I ⊕ Tk) = k− 1, the kth row of I ⊕ T2k+1 is changed to (0 0 · · · 0
(k+1)th

1 0 · · · 0 0

)
by the elementary row operation. Thus the (k + 1)th row of

(I ⊕ T2k+1)S2k+1 is Yk+1. Therefore Yk+1 is the zero vector. With the same
reason, the (k + 1)th column of S2k+1 should be the zero column. Hence

S2k+1 =

 Sk 0k Sk

0k
t 0 0k

t

Sk 0k Sk

 .

�

Corollary 3.4. Let Tn be the state transition matrix of the n-cell 90/150 group
NBCA with the minimal polynomial (1 + x)

n
, where n = 2r, r = 1, 2, · · ·. Then

(I ⊕ Tn)
n−1

=


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


Proof. Since T2 is ⟨0, 0⟩, (I ⊕ T2)

1 =

(
1 1
1 1

)
. By Theorem 3.3, we obtain

(I ⊕ Tn)
n−1

consisting of all columns with entries 1s. �

Example 3.5. For T3 = ⟨1, 1, 1⟩, S3 = (I ⊕ T3)
2
=

 1 0 1
0 0 0
1 0 1

 . Then

S6 = (I ⊕ T6)
5
=


1 0 1 1 0 1
0 0 0 0 0 0
1 0 1 1 0 1
1 0 1 1 0 1
0 0 0 0 0 0
1 0 1 1 0 1

 =

(
S3 S3

S3 S3

)
,

S7 = (I ⊕ T7)
6
=



1 0 1 0 1 0 1
0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 0 0 0 0 0 0
1 0 1 0 1 0 1


=

 S3 03 S3

03
t 0 03

t

S3 03 S3

 ,

where 03 is the 3× 1 zero matrix.

The following two theorems are main results in this paper.
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Theorem 3.6. Let C be the n-cell 90/150 group NBCA with the minimal poly-
nomial (1 + x)

n
, 2r−1 < n ≤ 2r (r = 2, 3, 4, · · · ). And let C̄ be the complemented

CA derived from C with the complement vector F = (f1f2 · · · fn)t with fi = 0 or
1, 1 ≤ i ≤ n. If ord(T ) = p for the state transition matrix T of C, then ord(T̄ )
for the state transition function T̄ of C̄ satisfies the following;

ord(T̄ ) =

 2r, 2r−1 < n < 2r,
2r+1, n = 2rand

∑n
i=1 fi ≡ 1 (mod2) ,

2r, n = 2rand
∑n

i=1 fi ≡ 0 (mod2) .

Proof. For ord(T ) = p, let ord(T̄ ) = k for some positive integer k.
(i) In case of 2r−1 < n < 2r :
From T 2r = I, we obtain p = 2r and T̄ pX =

(
I ⊕ T ⊕ T 2 ⊕ · · · ⊕ T p−1

)
F ⊕

T pX = (I ⊕ T )
p−1

F ⊕X. Since (I ⊕ T )
n
= O and n ≤ p−1, (I ⊕ T )

p−1
F = 0.

So T̄ pX = X and thus k|p. Therefore k = p = 2r by Lemma 3.2.
(ii) In case of n = 2r :

Since T̄ pX = (I ⊕ T )p−1F ⊕ T pX and (I ⊕ Tp)
p−1

=


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 by

Corollary 3.4, (I ⊕ T )p−1F ̸= 0 for the complement vector F = (f1f2f3 · · · fn)t
with

∑n
i=1 fi ≡ 1 (mod2). Therefore k > p and thus k = 2p = 2r+1 by Lemma

3.2. But (I ⊕ T )p−1F = 0 for the complement vector F = (f1f2f3 · · · fn)t with∑n
i=1 fi ≡ 0 (mod2), so T̄ pX = (I⊕T )p−1F⊕T pX = X and thus k = p = 2r. �

Theorem 3.7. Let C be the n-cell 90/150 group NBCA with the minimal poly-
nomial (1 + x)

n
, n = 2, 3, 4, · · · . And let C′ be the complemented CA derived

from C with the complement vector F = (f1f2 · · · fn)t such that (I⊕T )n−1F ̸= 0,
where T is the state transition matrix of C and fi = 0 or 1, 1 ≤ i ≤ n. Then all
the lengths of the cycles are equal to ord(T̄ ) in the state transition graph of C′.

Proof. Let T̄ be ord(T̄ ) = k. Then k = 2r or k = 2r+1 by Lemma 3.2. Assume
that there exists a cycle of length l such that l < k. Then l can be l = k

2 . Since

there exists a cycle of length l, there is a nonzero state X such that T̄ lX = X.
Then T̄ lX = (I ⊕ T )l−1F ⊕ T lX = X. Thus

(I ⊕ T )l−1F = (I ⊕ T )lX (3.3)

By multiplying (I ⊕ T )n−l to the both sides of (3.3), we obtain 0 ̸= (I ⊕
T )n−1F = (I ⊕ T )nX = 0. This is a contradiction. So there does not exist any
cycle with length l such that l < k. Hence all cycles in C′ have the same length
k = ord(T̄ ). �

To find the CA in which all the lengths of cycles are equal to ord
(
T̄
)
, it is

sufficient to find F such that (I⊕Tn)
n−1F ̸= 0. F can be obtained from the form

of (I ⊕ Tn)
n−1. If we try to find the Sn = (I ⊕ Tn)

n−1 from the state transition
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matrix Tn =< d1, d2, · · · , dn >, the time complexity is O(n). By Theorem 3.3,
we can easily derive (I⊕Tn)

n−1 from (I⊕T⌊n
2 ⌋)

⌊n
2 ⌋−1. And thus we can find the

complement vector F such that (I ⊕ Tn)
n−1F ̸= 0 within the time complexity

O(log2n).

4. Conclusion

In this paper, we analyzed the order of the complemented group CA derived
from 90/150 group CA and showed that all the lengths of the cycles in the
complemented CA are equal to the order of the complemented CA. Especially,
the order of the complemented group CA C̄ derived from 90/150 group CA C is
equal to or twice the order of C. And we showed that all the cycles in C̄ has the
same length cycle with the order of C̄. Also we showed that the time complexity
to find the complement vector F such that (I ⊕ Tn)

n−1F ̸= 0 is O(log2n). So it
is even more efficient than direct computation whose time complexity is O(n).
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