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SUFFICIENT CONDITIONS FOR SOME HAMILTONIAN

PROPERTIES AND K-CONNECTIVITY OF GRAPHS

RAO LI

Abstract. For a connected graph G = (V, E), its inverse degree is defined

as
∑

v∈V
1

d(v)
. Using an upper bound for the inverse degree of a graph

obtained by Cioabǎ in [4], we in this note present sufficient conditions for
some Hamiltonian properties and k-connectivity of a graph.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges.
Notation and terminology not defined here follow that in [3]. For a graph G =
(V, E), we use n and e to denote its order |V | and size |E|, respectively. We
use δ = d1 ≤ d2 ≤ · · · ≤ dn = ∆ to denote the degree sequence of G. If G is
connected, we define its inverse degree as

∑
v∈V

1
d(v) . A cycle C in a graph G is

called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G
is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is
called a Hamiltonian path of G if P contains all the vertices of G. A graph G
is called traceable if G has a Hamiltonian path. A graph G is called Hamilton-
connected if for each pair of vertices in G there is a Hamiltonian path between
them. In this note, we will use an upper bound for the inverse degree of a
graph obtained by Cioabǎ in [4] to present sufficient conditions for Hamiltonian,
traceable, Hamilton-connected, and k-connected graphs.

2. Main results

The main results of this paper are as follows.
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Theorem 2.1. Let G be a connected graph of order n ≥ 3 and size e. If

n2

2e
+

(
1

δ
− 1

∆

)(
n− 1− 2e

n

)
< 1 +

1

n− 2
+

1

∆
,

then G is Hamiltonian.

Theorem 2.2. Let G be a connected graph of order n ≥ 4 and size e. If

n2

2e
+

(
1

δ
− 1

∆

)(
n− 1− 2e

n

)
<

n

n− 2
+

1

n− 3
+

1

∆
,

then G is traceable.

Theorem 2.3. Let G be a connected graph of order n ≥ 3 and size e. If

n2

2e
+

(
1

δ
− 1

∆

)(
n− 1− 2e

n

)
<

1

2
+

1

n− 2
+

2

∆
,

then G is Hamilton-connected.

Theorem 2.4. Let G be a connected graph of order n ≥ k + 1 ≥ 3 and size e.
If

n2

2e
+

(
1

δ
− 1

∆

)(
n− 1− 2e

n

)
<

2

n+ k − 3
+

n− k + 1

2(n− 2)
+

k − 1

∆
,

then G is k-connected.

3. Lemmas

In order to prove the theorems above, we need the following results as our
lemmas.

Lemma 3.1 ([1]). Let G be a graph of order n ≥ 3 with degree sequence d1 ≤
d2 ≤ · · · ≤ dn. If

dk ≤ k <
n

2
=⇒ dn−k ≥ n− k,

then G is Hamiltonian.

Lemma 3.2 ([1]). Let G be a graph of order n ≥ 2 with degree sequence d1 ≤
d2 ≤ · · · ≤ dn. If

dk ≤ k − 1 ≤ n

2
− 1 =⇒ dn+1−k ≥ n− k,

then G is traceable.

Lemma 3.3 ([1]). Let G be a graph of order n ≥ 3 with degree sequence d1 ≤
d2 ≤ · · · ≤ dn. If

2 ≤ k ≤ n

2
, dk−1 ≤ k =⇒ dn−k ≥ n− k + 1,

then G is Hamilton-connected.
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Lemma 3.4 ([2]). Let G be a graph of order n ≥ 2 with degree sequence d1 ≤
d2 ≤ · · · ≤ dn and let 1 ≤ k ≤ n− 1. If

1 ≤ i ≤ ⌊n− k + 1

2
⌋, di ≤ i+ k − 2 =⇒ dn−k+1 ≥ n− i,

then G is k-connected.

Lemma 3.5 ([4]). Let G be a connected graph of order n and size e. Then∑
v∈V

1

d(v)
≤ n2

2e
+

(
1

δ
− 1

∆

)(
n− 1− 2e

n

)
.

Notice that Lemma 3.1 is Corollary 3 on Page 209 in [1] or Theorem 4.5
on Page 57 in [3], Lemma 3.2 is Corollary 6 on Page 210 in [1], Lemma 3.3 is
Theorem 12 on Page 218 in [1], Lemma 3.4 is the Corollary on Page 163 in [2],
and Lemma 3.5 is from Theorem 9 on Page 1963 in [4].

4. Proofs

Proof of Theorem 2.1. Let G be a graph satisfying the conditions in Theorem
2.1. Suppose that G is not Hamiltonian. Then, from Lemma 3.1, there exists
an integer k such that dk ≤ k < n

2 and dn−k ≤ n − k − 1. Obviously, k ≥ 1.
Therefore, from Lemma 3.5, we have that

n2

2e
+

(
1

δ
− 1

∆

)(
n− 1− 2e

n

)
≥

∑
v∈V

1

d(v)

=
1

d1
+ · · ·+ 1

dk
+

1

dk+1
+ · · ·+ 1

dn−k
+

1

dn+1−k
+ · · ·+ 1

dn

≥ k

dk
+

n− 2k

dn−k
+

k

dn

≥ k

k
+

n− 2k

n− k − 1
+

k

∆

≥ 1 +
1

n− 2
+

1

∆
,

a contradiction. This completes the proof of Theorem 2.1. �
Proof of Theorem 2.2. Let G be a graph satisfying the conditions in Theorem
2.2. Suppose that G is not traceable. Then, from Lemma 3.2, there exists an
integer k such that dk ≤ k − 1 ≤ n

2 − 1 and dn+1−k ≤ n − k − 1. Obviously,
k ≥ 2. Therefore, from Lemma 3.5, we have that

n2

2e
+

(
1

δ
− 1

∆

)(
n− 1− 2e

n

)
≥

∑
v∈V

1

d(v)
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=
1

d1
+ · · ·+ 1

dk
+

1

dk+1
+ · · ·+ 1

dn+1−k
+

1

dn+2−k
+ · · ·+ 1

dn

≥ k

dk
+

n+ 1− 2k

dn+1−k
+

k − 1

dn

≥ k

k − 1
+

n+ 1− 2k

n− k − 1
+

k − 1

∆

≥ 1 +
1

k − 1
+

1

n− 3
+

1

∆

≥ 1 +
1

n
2 − 1

+
1

n− 3
+

1

∆

=
n

n− 2
+

1

n− 3
+

1

∆
,

a contradiction. This completes the proof of Theorem 2.2. �

Proof of Theorem 2.3. Let G be a graph satisfying the conditions in Theorem
2.3. Suppose that G is not Hamilton-connected. Then, from Lemma 3.3, there
exists an integer k such that 2 ≤ k ≤ n

2 , dk−1 ≤ k, and dn−k ≤ n−k. Therefore,
from Lemma 3.5, we have that

n2

2e
+

(
1

δ
− 1

∆

)(
n− 1− 2e

n

)
≥

∑
v∈V

1

d(v)

=
1

d1
+ · · ·+ 1

dk−1
+

1

dk
+ · · ·+ 1

dn−k
+

1

dn−k+1
+ · · ·+ 1

dn

≥ k − 1

dk−1
+

n− 2k + 1

dn−k
+

k

dn

≥ k − 1

k
+

n− 2k + 1

n− k
+

k

∆

≥ 1− 1

k
+

1

n− 2
+

2

∆

≥ 1

2
+

1

n− 2
+

2

∆
,

a contradiction. This completes the proof of Theorem 2.3. �

Proof of Theorem 2.4. Let G be a graph satisfying the conditions in Theorem
2.4. Suppose that G is not k-connected. Then, from Lemma 3.4, there exists an
integer j such that 1 ≤ j ≤ ⌊n−k+1

2 ⌋ ≤ n−k+1
2 , dj ≤ j + k − 2, and dn−k+1 ≤

n− j − 1. Therefore, from Lemma 3.5, we have that

n2

2e
+

(
1

δ
− 1

∆

)(
n− 1− 2e

n

)
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≥
∑
v∈V

1

d(v)

=
1

d1
+ · · ·+ 1

dj
+

1

dj+1
+ · · ·+ 1

dn+1−k
+

1

dn+2−k
+ · · ·+ 1

dn

≥ j

dj
+

n+ 1− k − j

dn+1−k
+

k − 1

dn

≥ j

j + k − 2
+

n+ 1− k − j

n− j − 1
+

k − 1

∆

≥ 1
n−k+1

2 + k − 2
+

n+ 1− k − n+1−k
2

n− 2
+

k − 1

∆

=
2

n+ k − 3
+

n− k + 1

2(n− 2)
+

k − 1

∆
,

a contradiction. This completes the proof of Theorem 2.4. �
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