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EXPONENTIALLY FITTED INTERPOLATION FORMULAS

DEPENDING ON TWO FREQUENCIES†

KYUNG JOONG KIM

Abstract. Our goal is to construct a two-frequency-dependent formula

ĨN which interpolates a product f̃ of two functions with different frequen-
cies at some N points. In the beginning, it is not clear to us that the
formula ĨN satisfies

ĨN = f̃

at the points. However, it is later shown that ĨN satisfies the above equa-
tion. For this theoretical development, a one-frequency-dependent formula

is introduced, and some of its characteristics are explained. Finally, our
newly constructed formula ĨN is compared to the classical Lagrange inter-
polating polynomial and the one-frequency-dependent formula in order to
show the advantage that is obtained by generating the formula depending

on two frequencies.
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1. Introduction

The exponentially fitted technique was introduced to deal with numerical
differentiation and integration tuned to oscillatory functions [4]. This technique
was applied in order to approximate oscillatory functions with the information
of the functions known at two points (see Chapter 4 of [5]). The formulas to
approximate oscillatory functions were further studied and extended into a case
using the information of the functions at two or more given points [9]. Error
analysis for such exponentially-fitted-base(=EFB) formulas was also investigated
[2, 7]. Recently, some characteristics of the EFB formulas using the values of
first and higher-order derivatives have been dealt with more comprehensively
[8, 10]. Now, we will construct EFB formulas to interpolate the product of two
functions with different frequencies at some points.
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This article is organized as follows. In Section 2, a system of linear equations
is derived that is satisfied by the coefficients of the formula IN depending on a
single frequency. In Section 3, it is shown that IN is actually an interpolation
formula that matches an oscillatory function at some points. In Section 4, a
two-frequency-dependent interpolation formula ĨN is newly constructed. A reg-
ularization process is described to solve the singular problem that occurs when
one frequency approaches the other frequency. In Section 5, numerical results
are given and compared.

2. Constructing IN depending on a single frequency

Let us consider a formula to approximate an ω-dependent function f(x) on
[a, b] in terms of the values of the function at a set of predetermined points on
[a, b] where the function f is of the form

f(x) = ϵ1(x) cos(ωx) + ϵ2(x) sin(ωx). (1)

In the above, ϵ1 and ϵ2 are assumed to be smooth enough to be approximated
by polynomials. The formula with the coefficients α1, α2, . . . , αN is denoted by
IN and given by

f(c+ ht) ≈ IN (t) =
∑N

k=1 αk(ω, h, t,X )f(c+ hxk) (2)

where c = (a+ b)/2, h = (b− a)/2 and −1 ≤ t ≤ 1 and X = (x1, x2, . . . , xN ). In
(2), xk is given by

xk = −1 + 2(k − 1)/(N − 1) (3)

where k = 1, 2, . . . , N. Thus, x1, x2, . . . , xN are equidistant and symmetrically
distributed around 0. For example, using (3) with N = 4 gives

x1 = −1, x2 = −1/3, x3 = 1/3, x4 = 1.

Therefore, the points c + hx1, c + hx2, . . . , c + hxN are equidistant on [a, b]
and symmetrically distributed around c. In (2), the coefficients α1, α2, . . . , αN

will depend on the values of ω, h, t and X . But, for simplicity we will take the
notation αk instead of αk(ω, h, t,X ).

Let us introduce a functional M,

M(f(x), h,A) = f(x+ ht)−
∑N

k=1 αkf(x+ hxk), (4)

where A is a vector of the coefficients. That is,

A = (α1, α2, . . . , αN ).

To construct IN , we are concerned with determining the coefficients α1, α2, . . . ,
αN which satisfy N conditions such as

M(xke±iωx, h,A) = 0 (k = 0, 1, 2, . . . , N/2− 1). (5)

In the above, the functions xke±iωx will be called reference functions. Note that
cos(ωx) and sin(ωx) are expressed by linear combinations of e±iωx. To obtain
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the values of the coefficients α1, α2, . . . , αN , we will assume two facts as follows.

(i): The value of ω is known.
(ii): The values of f(x) are given at x = c+ hx1, c+ hx2, . . . , c+ hxN .

In this article, assume that N is even. For an odd N, one more function is
needed to obtain a system with the same number of equations as the number
of coefficients, in addition to the reference functions xke±iωx. See [4] for more
details about the reference functions to be taken.

To understand the rest of this article more easily, the Ixaru’s functions and
their properties are stated as follows (see Section 3.4 of [3]).

(i):

η−1(Z) =

{
cos(|Z|1/2) if Z < 0
cosh(Z1/2) if Z ≥ 0,

(6)

(ii):

η0(Z) =

 sin(|Z|1/2)/|Z|1/2 if Z < 0
1 if Z = 0

sinh(Z1/2)/Z1/2 if Z > 0,
(7)

(iii): for s = 1, 2, 3, . . . ,

ηs(Z) =

{
(ηs−2(Z)− (2s− 1)ηs−1(Z))/Z if Z ̸= 0

2ss!/(2s+ 1)! if Z = 0.
(8)

The power series and differentiation of the Ixaru’s functions are given (see
also Section 3.4 of [3]).

(i):

ηs(Z) = 2s
∞∑
q=0

gsqZ
q/(2q + 2s+ 1)! (9)

with

gsq =

{
1 if s = 0
(q + 1)(q + 2) . . . (q + s) if s = 1, 2, 3, . . . ,

(ii):
d

dZ
ηs(Z) =

1

2
ηs+1(Z), s = −1, 0, 1, . . . . (10)

Under these circumstances, let us start the procedure to determine the values
of α1, α2, . . . , αN . Using (4) with f(x) = eµx gives

M(eµx, h,A) = eµxψ(µh,A) (11)

where µ = iω and

ψ(u,A) = eut −
∑N

k=1 αke
uxk . (12)
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Likewise,

M(e−µx, h,A) = e−µxψ(−µh,A). (13)

Using (12), define

Ψp(Z,A) = 1
2 (ψ(u,A) + ψ(−u,A)) (14)

and

Ψn(Z,A) = 1
2u (ψ(u,A)− ψ(−u,A)) (15)

where Z = u2 = (µh)2 = −ω2h2. Then the Ixaru’s functions give

Ψp(Z,A) = η−1(Zt
2)−

∑N/2
k=1 α

+
k η−1(Zx

2
k) (16)

and

Ψn(Z,A) = tη0(Zt
2)−

∑N/2
k=1 α

−
k xkη0(Zx

2
k) (17)

where, for k = 1, 2, . . . , N/2,

α+
k = αk + αN+1−k and α−

k = αk − αN+1−k. (18)

Now, it is clear that if one of the following two properties is satisfied, the other
is also satisfied:

(i) M(e±µx, h,A) = 0,
(ii) Ψp(Z,A) = 0,Ψn(Z,A) = 0.

(19)

The equivalence of (i) and (ii) is obtained from (11) and (13)-(15). Next we see
that, for m = 0, 1, 2, . . . ,

dm

dµmM(eµx, h,A) = M(xmeµx, h,A)

and
dm

dµmM(e−µx, h,A) = (−1)mM(xme−µx, h,A).

Thus, if one of the following two properties is satisfied, the other is also satisfied:

(a) M(xme±µx, h,A) = 0, m = 0, 1, . . . , N/2− 1,

(b) dm

dZmΨp(Z,A) = 0, dm

dZmΨn(Z,A) = 0,
m = 0, 1, . . . , N/2− 1.

(20)

To obtain the equivalence of (a) and (b), the chain rule is applied:

d
dµΨp(Z,A) = d

dZΨp(Z,A)dZdµ = d
dZΨp(Z,A)2µh2.

The details of (b) in (20) are given by

dm

dZmΨp(Z,A) = 1
2m

(
t2mηm−1(Zt

2)−
∑N/2

k=1 α
+
k x

2m
k ηm−1(Zx

2
k)
)

(21)

and

dm

dZmΨn(Z,A) = 1
2m

(
t2m+1ηm(Zt2)−

∑N/2
k=1 α

−
k x

2m+1
k ηm(Zx2k)

)
. (22)

Let us denote N∗ = N/2. As seen in (21), the first system of (b) in (20),

dm

dZmΨp(Z,A) = 0, m = 0, 1, . . . , N∗ − 1,
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is linear in α+
k . Thus, it is possible to arrange it into the matrix equation

M+X+ = Y + (23)

where (i) M+ is an N∗ × N∗ matrix, (ii) X+ and Y + are all column vectors
with N∗ components. The details of the matrix equation in (23) are given: for
m = 0, 1, . . . , N∗ − 1 and k = 1, 2, . . . , N∗,

M+(m+ 1, k) = x2mk ηm−1(Zx
2
k),

X+(m+ 1) = α+
m+1,

Y +(m+ 1) = t2mηm−1(Zt
2).

(24)

We denoteM(j, k) and V (j) by the (j, k) entry of a matrixM and the jth entry
of a vector V, respectively.

Similarly, the second system of (b) in (20),

dm

dZmΨn(Z,A) = 0, m = 0, 1, . . . , N∗ − 1,

is expressed by the matrix equation

M−X− = Y − (25)

because it is linear in α−
k . In the above, M− is an N∗×N∗ matrix whose entries

are given by
M−(m+ 1, k) = x2m+1

k ηm(Zx2k) (26)

for m = 0, 1, . . . , N∗ − 1 and k = 1, 2, . . . , N∗. Also, X− and Y − are column
vectors with N∗ components, respectively, such that

X−(m+ 1) = α−
m+1 and Y −(m+ 1) = t2m+1ηm(Zt2) (27)

for m = 0, 1, . . . , N∗ − 1.
Now, α+

k and α−
k are determined by solving the two matrix equations (23)

and (25) where k = 1, 2, . . . , N∗. Therefore, α1, α2, α3, . . . , αN are obtained
from (18). In the following section, some properties of αk are investigated.

3. Properties of αk

At the moment, we do not know yet the fact that

[IN (t)]x=c+hxk
= [f(x)]x=c+hxk

(28)

where k = 1, 2, . . . , N. This is because IN was only constructed in a way to
satisfy (5). We did not impose (28) on the construction of IN . But, it will be
proved in Corollary 3.3 that IN satisfies (28). Consequently, IN represents an
interpolation formula.

To begin with, let us investigate the relation between Y ± and M±. The first
and last equations of (24) give

[Y +(·)]t=±xk
=M+( · , k) (29)

where k = 1, 2, . . . , N∗. Also, (26) and the second equation of (27) give

[Y −(·)]t=xk
=M−( · , k) and [Y −(·)]t=−xk

= −M−( · , k) (30)



212 Kyung Joong Kim

where k = 1, 2, . . . , N∗. With these findings, apply the Cramer’s Rule to solve
the two linear systems (23) and (25), respectively. Thus, Lemma 3.1 is obtained.

Lemma 3.1. For j, k = 1, 2, . . . , N∗,

[
α+
j

]
t=±xk

=

{
1, if j = k,
0, otherwise,[

α−
j

]
t=xk

=

{
1, if j = k,
0, otherwise,

[
α−
j

]
t=−xk

=

{
−1, if j = k,
0, otherwise.

(31)

Proof. The determinant det(M) of a square matrixM is equal to 0 if two columns
(or rows) of the matrix M are equal. This property is used to get (31) when the
Cramer’s Rule is applied to the matrix equations (23) and (25). �

From (18), we have

αk = 1
2 (α

+
k + α−

k ), αN+1−k = 1
2 (α

+
k − α−

k ) (32)

where k = 1, 2 . . . , N∗. Since x1, x2, . . . , xN are symmetrically distributed around
0, the equation

xN+1−k = −xk (33)

holds for k = 1, 2 . . . , N∗. From Lemma 3.1, some properties of the coefficients
of IN are obtained and stated in Theorem 3.2.

Theorem 3.2. For j, k = 1, 2, . . . , N,

[αj ]t=xk
=

{
1, if j = k,
0, otherwise.

(34)

Proof. Note that N = 2N∗. By Lemma 3.1 and (32), the following results are
obtained. For q, r = 1, 2, . . . , N∗,

(i) [αq]t=xr
=

([
α+
q

]
t=xr

+
[
α−
q

]
t=xr

)
/2

=

{
(1 + 1)/2 = 1, if q = r,
(0 + 0)/2 = 0, otherwise,

(ii) [αq]t=xN+1−r
= [αq]t=−xr

=
([
α+
q

]
t=−xr

+
[
α−
q

]
t=−xr

)
/2

=

{
(1 + (−1))/2 = 0, if q = r,
(0 + 0)/2 = 0, otherwise,
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(iii) [αN+1−q]t=xr
=

([
α+
q

]
t=xr

−
[
α−
q

]
t=xr

)
/2

=

{
(1− 1)/2 = 0, if q = r,
(0− 0)/2 = 0, otherwise,

(iv) [αN+1−q]t=xN+1−r
= [αN+1−q]t=−xr

=
([
α+
q

]
t=−xr

−
[
α−
q

]
t=−xr

)
/2

=

{
(1− (−1))/2 = 1, if q = r,
(0− 0)/2 = 0, otherwise.

The above results prove (34). �

Corollary 3.3. For k = 1, 2, . . . , N,

[IN (t)]x=c+hxk
= [f(x)]x=c+hxk

(35)

where x = c+ ht.

Proof. Theorem 3.2 says that, for k = 1, 2, . . . , N,

[IN (t)]x=c+hxk
= [IN (t)]t=xk

=
∑N

j=1 [αj ]t=xk
f(c+ hxj)

= [αk]t=xk
f(c+ hxk)

= 1 · f(c+ hxk) = f(c+ hxk)

�

As seen in (5), we did not impose (35) on IN at the beginning so that IN
did not necessarily satisfy (35). However, Corollary 3.3 shows that IN matches
f at the given points. In particular, the result of Corollary 3.3 can be accessed
by the theoretical developments which were studied in [8].

4. Constructing ĨN depending on two frequencies

This section we consider a formula to approximate a product of two oscillatory
functions f1 and f2 with different frequencies ω1 and ω2 where

fj(x) = fj,1(x) cos(ωjx) + fj,2(x) sin(ωjx), j = 1, 2. (36)

In (36), fj,1 and fj,1 are assumed to be smooth enough to be approximated by

polynomials. The product of f1(x) and f2(x), denoted by f̃ , follows

f̃(x) = f1(x)× f2(x)
= p1(x) cos(τ1x) + p2(x) sin(τ1x)

+p3(x) cos(τ2x) + p4(x) sin(τ2x)
(37)

where τ1 = ω1 − ω2, τ2 = ω1 + ω2 and

p1 = (f1,1f2,1 + f1,2f2,2)/2, p2 = (f1,2f2,1 − f1,1f2,2)/2,
p3 = (f1,1f2,1 − f1,2f2,2)/2, p4 = (f1,1f2,2 + f1,2f2,1)/2.

This shows that the product is a sum of two oscillatory functions with different
frequencies τ1 and τ2. Thus, the formula IN which was introduced in Section 2
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can be used to approximate the product f̃ . That is, we are led to the problem
of determining the coefficients αk of IN with respect to f̃ such that

M(xne±iωx, h,A) = 0 (ω = τ1, τ2 and n = 0, 1, 2, . . .). (38)

If such coefficients to satisfy (38) are obtained, they obviously depend on the
values of two frequencies. To indicate such facts explicitly, we will take the
notations of α̃k and ĨN instead of αk and IN , respectively. Thus, IN in (2) is
re-expressed by

f̃(c+ ht) ≈ ĨN (t) =
∑N

k=1 α̃kf̃(c+ hxk) (39)

where α̃k = α̃k(τ1, τ2, h, t,X ) (equivalently, α̃k = α̃k(ω1, ω2, h, t,X )). Note that
c, h, t and xk in (39) were stated in the fore part of Section 2.

By the way, some of the equations given by (38) will be associated to τ1, while
the others to τ2. If the number of such equations is N∗

1 and N∗
2 , respectively, our

system to solve is:

(i): for m = 0, 1, 2, . . . , N∗
1 − 1, t2mηm−1(Z1t
2) =

∑N∗

k=1 α̃
+
k x

2m
k ηm−1(Z1x

2
k)

t2m+1ηm(Z1t
2) =

∑N∗

k=1 α̃
−
k x

2m+1
k ηm(Z1x

2
k),

(40)

(ii): for m = 0, 1, 2, . . . , N∗
2 − 1, t2mηm−1(Z2t

2) =
∑N∗

k=1 α̃
+
k x

2m
k ηm−1(Z2x

2
k)

t2m+1ηm(Z2t
2) =

∑N∗

k=1 α̃
−
k x

2m+1
k ηm(Z2x

2
k)

(41)

where N∗
1 +N∗

2 = N∗, Zj = −τ2j h2 (j = 1, 2) and

α̃+
k = α̃k + α̃N+1−k and α̃−

k = α̃k − α̃N+1−k.

These results come from (21) and (22).
When N∗

1 and N∗
2 are chosen, there is no any restriction on the choice except

that N∗
1 +N

∗
2 = N∗. However, we need to be careful about the choice of N∗

1 and

N∗
2 . The detailed form of f̃ given by (37) leads to a suitable choice of N∗

1 and N∗
2 .

If the behaviors of p1 and p2 relatively smoother than those of p3 and p4, it is
certainly acceptable to take N∗

1 < N∗
2 . For example, suppose p1 and p2 behave

like polynomials of degree one, and suppose p3 and p4 do like polynomials of
degree two. Then taking N∗

1 = 2 and N∗
2 = 3 is a good choice.

Next, let us rearrange (40) and (41) as follows:

 t2mηm−1(Z1t
2) =

∑N∗

k=1 α̃
+
k x

2m
k ηm−1(Z1x

2
k),m = 0, 1, . . . , N∗

1 − 1,

t2mηm−1(Z2t
2) =

∑N∗

k=1 α̃
+
k x

2m
k ηm−1(Z2x

2
k),m = 0, 1, . . . , N∗

2 − 1

(42)

and



Exponentially fitted interpolation formulas depending on two frequencies 215

 t2m+1ηm(Z1t
2) =

∑N∗

k=1 α̃
−
k x

2m+1
k ηm(Z1x

2
k),m = 0, 1, . . . , N∗

1 − 1,

t2m+1ηm(Z2t
2) =

∑N∗

k=1 α̃
−
k x

2m+1
k ηm(Z2x

2
k),m = 0, 1, . . . , N∗

2 − 1.

(43)

As a result, (42) is linear in α̃+
k . Therefore it is written in the form of the matrix

equation

M̃+X̃+ = Ỹ + (44)

where (i) M̃+ is an N∗×N∗ matrix, (ii) X̃+ and Ỹ + are column vectors with N∗

components, respectively. By solving (44), the values of α̃+
k (equivalently, X̃+)

are obtained. However, this only occurs when the matrix M̃+ is nonsingular. If
Z2 → Z1 (equivalently τ2 → τ1), the system is not stable. But, the problem of
this type can be removed by a proper regularization of the system (see [6] for
more details). The essence of the regularization may be understood by properly
treating the following two equations:

M(eµ1x, h,A) = 0, M(eµ2x, h,A) = 0 (45)

where µ1 = iτ1 and µ2 = iτ2. As µ2 → µ1, the two equations of (45) become
more and more identical, so that the involved system becomes singular. To
remove the singular problem, we write the two equations of (45) as

M(eµ1x, h,A) = 0 (46)

and
M(eµ2x,h,A)−M(eµ1x,h,A)

µ2−µ1
= 0. (47)

Letting µ2 → µ1, we note that (47) tends to

M(xeµ1x, h,A) = 0. (48)

Hence, as µ2 → µ1, the original two equations of (45) become the same sys-
tem as we need in order to obtain one-frequency-dependent (or µ1-dependent)
interpolation formula which is exact for f(x) = eµ1x, xeµ1x.

As done in the above process, let us apply the regularization technique to
(42). Thus, we have that, for m = 0,

η−1(Z1t
2) =

∑N∗

k=1 α̃
+
k η−1(Z1x

2
k) (49)

and
η−1(Z2t

2) =
∑N∗

k=1 α̃
+
k η−1(Z2x

2
k). (50)

The above two equations are written as

η−1(Z1t
2) =

∑N∗

k=1 α̃
+
k η−1(Z1x

2
k) (51)

and
η−1(Z2t

2)−η−1(Z1t
2)

Z2−Z1
=

∑N∗

k=1 α̃
+
k

η−1(Z2x
2
k)−η−1(Z1x

2
k)

Z2−Z1
.

(52)
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In particular, (52) is expressed by the series as follows:

t2
∑∞

n=1
1

n!2n ηn−1(Z1t
2)

(
t2(Z2 − Z1)

)n−1

=
∑N∗

k=1 α̃
+
k x

2
k

∑∞
n=1

1
n!2n ηn−1(Z1x

2
k)

(
x2k(Z2 − Z1)

)n−1
.

(53)

This is done by using the Taylor series for η−1 and its differentiation property
given by (10).

So far in this section, the regularization has been applied to some of the
equations given by (42) involved with α̃+

k . But, our arguments about the regu-

larization can also be applied to (43) involved with α̃−
k . First, (43) can be viewed

as the matrix equation

M̃−X̃− = Ỹ − (54)

where (i) M̃− is an N∗×N∗ matrix, (ii) X̃− and Ỹ − are column vectors with N∗

components. By solving (54), the values of α̃−
k (equivalently X̃−) are obtained.

Secondly, the regularization is reflected on the following two equations,

tη0(Z1t
2) =

∑N∗

k=1 α̃
−
k xkη0(Z1x

2
k) (55)

and

tη0(Z2t
2) =

∑N∗

k=1 α̃
−
k xkη0(Z2x

2
k), (56)

which come from the case ofm = 0 in (43). Finally, from the above two equations
we have an analogue of (53) represented by α̃−

k as follows:

t3
∑∞

n=1
1

n!2n ηn(Z1t
2)

(
t2(Z2 − Z1)

)n−1

=
∑N∗

k=1 α̃
−
k x

3
k

∑∞
n=1

1
n!2n ηn(Z1x

2
k)

(
x2k(Z2 − Z1)

)n−1
.

(57)

If more equations are associated and they face the singular problem, the
general regularization procedure developed in [6] is applied to our systems (42)
and (43), respectively, to avoid the singularity of each system. Thus, our two
systems are rearranged in such a way using both the Taylor series for ηs and the
differentiation property of ηs as (53) (or (57) ) has been derived from (49) and
(50) (or (55) and (56)). Let’s approach more closely to actual circumstances.
When the regularization procedure is practically carried out in the computer
program, a threshold value δ can be used to calculate the fractional forms of
(52). That is, (52) is calculated by its own form when |Z2t

2 − Z1t
2| ≥ δ (or

|Z2x
2
k − Z1x

2
k| ≥ δ) whereas it is calculated by truncated Taylor series of (53)

when |Z2t
2 − Z1t

2| < δ (or |Z2x
2
k − Z1x

2
k| < δ).

Now, let’s consider the value of ĨN at some points. As shown in (35), the same
values of IN and f are obtained at the given points. The equality is maintained
by ĨN and f̃ . This fact is stated in the following.
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Theorem 4.1. For k = 1, 2, . . . , N,[
ĨN (t)

]
x=c+hxk

=
[
f̃(x)

]
x=c+hxk

(58)

where x = c+ ht.

Proof. The linear system given in (44) has the following details:

M̃+(·, k) =
[
η−1(Z1x

2
k), x

2
kη0(Z1x

2
k), x

4
kη1(Z1x

2
k), . . . ,

x
2(N∗

1 −1)
k ηN∗

1 −2(Z1x
2
k), η−1(Z2x

2
k), x

2
kη0(Z2x

2
k), . . . ,

x
2(N∗

2 −1)
k ηN∗

2 −2(Z2x
2
k)
]T
,

(59)

X̃+ =
[
α̃+
1 , α̃

+
2 , α̃

+
3 , . . . , α̃

+
N∗

1
, α̃+

N∗
1 +1, α̃

+
N∗

1 +2, . . . , α̃
+
N∗

]T
,

Ỹ + =
[
η−1(Z1t

2), t2η0(Z1t
2), t4η1(Z1t

2), . . . ,

t2(N
∗
1 −1)ηN∗

1 −2(Z1t
2), η−1(Z2t

2), t2η0(Z2t
2), . . . ,

t2(N
∗
2 −1)ηN∗

2 −2(Z2t
2)
]T
.

(60)

Likewise, all components of the other linear system (54) are given below:

M̃−(·, k) =
[
xkη0(Z1x

2
k), x

3
kη1(Z1x

2
k), x

5
kη2(Z1x

2
k), . . . ,

x
2N∗

1 −1
k ηN∗

1 −1(Z1x
2
k), xkη0(Z2x

2
k), x

3
kη1(Z2x

2
k), . . . ,

x
2N∗

2 −1
k ηN∗

2 −1(Z2x
2
k)
]T
,

(61)

X̃− =
[
α̃−
1 , α̃

−
2 , α̃

−
3 , . . . , α̃

−
N∗

1
, α̃−

N∗
1 +1, α̃

−
N∗

1 +2, . . . , α̃
−
N∗

]T
,

Ỹ − =
[
tη0(Z1t

2), t3η1(Z1t
2), t5η2(Z1t

2), . . . ,

t2N
∗
1 −1ηN∗

1 −1(Z1t
2), tη0(Z2t

2), t3η1(Z2t
2), . . . ,

t2N
∗
2 −1ηN∗

2 −1(Z2t
2)
]T
.

(62)

On the one hand, (59) and (60) give[
Ỹ +(·)

]
t=±xk

= M̃+( · , k) (63)

where k = 1, 2, . . . , N∗. On the other hand, (61) and (62) give[
Ỹ −(·)

]
t=xk

= M̃−( · , k) and
[
Ỹ −(·)

]
t=−xk

= −M̃−( · , k) (64)

where k = 1, 2, . . . , N∗. As (29) and (30) are led to the conclusion of Corollary
3.3, the findings of (63) and (64) lead to the conclusion of Theorem 4.1. Note
that the results of (29) and (30) were the starting point for achieving Corollary
3.3. Based on the equation given in (53) (or (57)), it is also expected that
the results of (63) and (64) will be followed after the regularization process is
performed. Thus, Theorem 4.1 is proved. �
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5. Discussion

As far as one-frequency-dependent (or ω-dependent) interpolation formula IN
is concerned, the absolute values of α±

1 , α
±
2 , . . . , α

±
N∗ (consequently, the absolute

value of the error of IN ) may be very large around some particular values of ω
when h, t and x1, x2, . . . , xN are given (see Section 4.3 of [5] for N = 2). If the
error of IN shows such extreme values, it will be said to exhibit what we call
pole-like behaviors around the particular values of ω. This phenomenon occurs
because the value of the determinant of the associated matrix approaches zero
in the vicinity of ω where the pole-like behaviors appear. In fact, such pole-like
behaviors were also witnessed when numerical differentiation and integration
were investigated by exponentially fitted techniques (see [4] for the details).
Therefore, to obtain the benefit, IN should be applied to the values of ω which
are placed between the pole-like behaviors. This treatment is echoed in the two-
frequency-dependent case in the following. Such pole-like behaviors have also
been detected for ĨN . If our two frequencies of interest are located between the
pole-like behaviors, our formula ĨN will provide a more accurate approximation
with respect to the function f̃ that depends on the two frequencies than IN .
Technically, to find out the proper values for ω1 and ω2, the error of ĨN can
be observed while changing the value of ω2 (or ω1) after fixing the value of ω1

(or ω2) of interest. Then, ω2 (or ω1) can be selected in the range in which the
pole-like behavior does not appear.

To show the relative superiority of ĨN , numerical results will be illustrated.
For this purpose, let us consider an example function given by

f̃(x) = f1(x)× f2(x) (65)

where
f1(x) = cos(x) cos(ω1x)− sin(x) sin(ω1x)

and
f2(x) = cos(x) cos(ω2x)− sin(x) sin(ω2x).

To compare the numerical results, we introduce the classical Lagrange interpo-
lating polynomial (see Chap. 3 of [1]) for the function f̃(x), denoted by PN (x),
which is constructed at x = c + hxk for k = 1, 2, . . . , N (see (3) for xk). As
might be expected, the PN is the polynomial of degree N − 1, and it satisfies
that for k = 1, 2, . . . , N,

PN (c+ hxk) = f̃(c+ hxk). (66)

Assume that c = 1 and h = 0.1 in (39) (and (2), (66)). Then, for N = 4, 8

with N∗
1 = N∗

2 in both cases, we have investigated ĨN . As a result, ĨN is free
of the pole-like behavior when N = 4, 0 ≤ ω1 ≤ 20 and 0 ≤ ω2 ≤ ω1 and when
N = 8, 0 ≤ ω1 ≤ 50 and 0 ≤ ω2 ≤ ω1. To approximate the example function f̃
with ω1 = 17 and ω2 = 15, we consider three versions:

(a) classical Lagrange interpolating polynomial PN .
(b) one-frequency-dependent interpolation formula IN when ω = 17.
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(c) our newly constructed two-frequency-dependent interpolation formula ĨN
when ω1 = 17 and ω2 = 15 (equivalently, τ1 = 2 and τ2 = 32).

In Figs. 1 and 2, the error of each version is given and compared depending on
N = 4 and 8. As seen in Figs. 1 and 2, our formula ĨN is more accurate for
the function f̃ than PN and IN . In fact, these benefits with greater accuracy
are predictable. This is because our formula ĨN is determined depending on two
frequencies. The numerical results in Figs. 1 and 2 are obtained from Matlab
[11].

Judging by the integration of the numerical results and theoretical develop-
ments demonstrated in this article, we consider that the formula ĨN can be used
as an efficient and useful tool. The error analysis for the interpolation formula
handled in the article, which depends on two frequencies, may be the subject
of a following study. Furthermore, the information obtained in this article may
be developed into a region for generating two-frequency-dependent interpolation
formulas involving first and higher-order derivatives.

Figure Captions.

(i): The notations in Figs. 1 and 2 are defined by

a = f̃ −PN , b = f̃ − IN , c = f̃ − ĨN
where f̃ is given by (65) with ω1 = 17 and ω2 = 15. In the above, PN

is the classical Lagrange interpolating polynomial and IN is given for
ω = 17, while ĨN is given for ω1 = 17 and ω2 = 15 (equivalently, for
τ1 = 2 and τ2 = 32).
(ii):
Figure 1: Error comparison for N = 4.
Figure 2: Error comparison for N = 8.
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Figure 1. N = 4



220 Kyung Joong Kim

0.9 0.95 1 1.05 1.1
−1

0

1

2

3

4

5
x 10

−3

 a: dashed

 b: solid

 c: dotted

 x

 E
rr

o
r

Figure 2. N = 8
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