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BOUNDARY VALUE PROBLEMS FOR FRACTIONAL

INTEGRODIFFERENTIAL EQUATIONS INVOLVING

GRONWALL INEQUALITY IN BANACH SPACE

K. KARTHIKEYAN∗, C. CHANDRAN AND J.J. TRUJILLO

Abstract. In this paper, we study boundary value problems for fractional

integrodifferential equations involving Caputo derivative in Banach spaces.
A generalized singular type Gronwall inequality is given to obtain an impor-
tant priori bounds. Some sufficient conditions for the existence solutions
are established by virtue of fractional calculus and fixed point method un-

der some mild conditions
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1. Introduction

In this paper, we consider the existence of solutions of the following boundary
value problems:{

cDαy(t) = f(t, y(t), (Gy)(t), (Sy)(t)), 0 < α < 1, t ∈ J = [0, T ],
ay(0) + by(T ) = c,

(1)

where cDα is the Caputo fractional derivative of order α, f : J×X×X×X → X
where X is a Banach spaces and a, b, c are real constants with a+ b ̸= 0. G and
S are nonlinear integral operators given by

(Gy)(t) =

∫ t

0

k1(t, s)y(s)ds,

and

(Sy)(t) =

∫ t

0

k2(t, s)y(s)ds
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with γ0 = max
∫ t

0
k1(t, s)ds : (t, s) ∈ [0, T ]× [0, T ] and

γ1 = max
∫ t

0
k2(t, s)ds : (t, s) ∈ [0, T ]× [0, T ], where k1, k2 ∈ C (J × J,R+).

The initial and boundary value problems for nonlinear fractional differen-
tial equations arise from the study of models of viscoelasticity, electrochem-
istry, control, porous media, electromagnetic, etc (see[6,11,15]). Therefore,they
have received much attention. For the most recent works for the existence and
uniqueness of solution of the initial and boundary value problems for nonlinear
fractional differential equations, we mention [1-5,7,9,15-23]. But in the obtained
results, for the existence, the nonlinear term f needs to satisfy the condition:
there exist functions p, r ∈ C([0, 1], [0,∞)) such that for 1 ≥ t ≥ 0 and each
u ∈ R,

|f(t, u)| ≤ p(t)|u|+ r(t)

and for the uniqueness,the nonlinear term f needs to satisfy the condition: there
exist functions p, r ∈ C([0, 1], [0,∞)) such that for each 1 ≥ t ≥ 0 and any
u, v ∈ R,

|f(t, u)− f(t, v)| ≤ p(t)|u− v|

such that by using these result, we cannot discuss the existence and uniqueness
of solution. Particulary, Agarwal et al. [1] establish sufficient conditions for the
existence and uniqueness of solutions for various classes of initial and boundary
value problem for fractional differential equations and inclusions involving the
Caputo fractional derivative in finite diminsional spaces. Recently, some frac-
tional differential eqquations and optimal controals in Banach spaces are studied
by Balachandran et al.[5], El-Borai [7], Henderson and Ourhab [9], Hernandez
et.al [11],K.Karthikeyan and J.J.Trujillo [11] Mophou and N, Guerekata [16],
Wang et al.[20-22].

The rest of this paper is organized as follows. In Sect. 2, we give some
notations and recall some concepts and preparation results. In Sect. 3, we give a
generalized singular type Gronwall inequaltity which can be uses to establish the
estimate of fixed point set. In Sect. 4, we give two main results, the first results
based on Banach contraction principale, the second result based on Schaefer’s
fixed point theorem.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this paper. We denote C(J,X) the Banach space
of all continuous functions from J into X with the norm ∥y∥∞ := sup{∥y(t)∥ :
t ∈ J}. For measurable functions m : J → R, define the norm ∥m∥Lp(J,R) =(∫

J

|m(t)|pdt
) 1

p

, 1 ≤ p < ∞. We denote Lp(J,R) the Banach space of all

Lebesgue measurable functions m with ∥m∥Lp(J,R) < ∞. We need some basic
definitions and properties of the fractional calculus theory which are used further
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in this paper. For more details, see [11].

Definition 1. The fractional order integral of the function h ∈ L1([a, b], R) of
order α ∈ R+ is defined by

Iαa h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds

where Γ is the Gamma function.

Definition 2. For a function h given on the interval [a, b], the αth Riemann-
Liouville fractional order derivative of h, is defined by

(Dα
a+h)(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1h(s)ds,

here n = [α] + 1 and [α] denotes the integer part of α.

Definition 3. For a function h given on the interval [a, b], the Caputo fractional
order derivative of h, is defined by

(cDα
a+h)(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 1. Let α > 0, then the differential equation cDαh(t) = 0 has solutions

h(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, · · · , n, n = [α] + 1.

Lemma 2. Let α > 0, then

Iα(cDαh)(t) = h(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

for some ci ∈ R, i = 0, 1, 2, · · · , n, n = [α] + 1.

Now, let us introduce the definition of a solution of the fractional BVP (1).

Definition 4. A function y ∈ C1(J,X) is said to be a solution of the fractional
BVP (1) if y satisfies the equation cDαy(t) = f(t, y(t), (Gy)(t), (Sy)(t)) a.e. on
J , and the condition ay(0) + by(T ) = c.

For the existence of solutions for the fractional BVP (1), we need the following
auxiliary lemma.

Lemma 3 ([1]). A function y ∈ C(J,X) is a solution of the fractional integral
equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds− 1

a+ b

[
b

Γ(α)

∫ T

0

(T − s)α−1f(s)ds− c

]
,
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if and only if y is a solution of the following fractional BVP{
cDαy(t) = f(t), 0 < α < 1, t ∈ J,
ay(0) + by(T ) = c.

(2)

As a consequence of Lemmas 3, we have the following result which is useful
in what follows.

Lemma 4. A function y ∈ C(J,X) is a solution of the fractional integral equa-
tion

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), (Gy)(s), (Sy)(s))ds

− 1

a+ b

[
b

Γ(α)

∫ T

0

(T − s)α−1f(s, y(s), (Gy)(s), (Sy)(s))ds− c

]
,

if and only if y is a solution of the fractional BVP (1).

Lemma 5 (Bochner theorem, [2]). A measurable function f : J → X is Bochner
integrable if ∥f∥ is Lebesbuge integrable.

Lemma 6 (Mazur lemma, [2]). If K is a compact subset of X, then its convex
closure convK is compact.

Lemma 7 (Ascoli-Arzela theorem, [18]). Let S = {s(t)} is a function family of
continuous mappings s : [a, b] → X. If S is uniformly bounded and equicontinu-
ous, and for any t∗ ∈ [a, b], the set {s(t∗)} is relatively compact, then there exists
a uniformly convergent function sequence {sn(t)}(n = 1, 2, · · · , t ∈ [a, b]) in S.

Theorem 1 (Schaefer’s fixed point theorem, [18]). Let F : X → X completely
continuous operator. If the set

E(F ) = {x ∈ X : x = λFx for some λ ∈ [0, 1]}
is bounded, then F has fixed points.

3. A generalized singular type Gronwall’s inequality

In order to apply the Schaefer fixed point theorem to show the existence
of solutions, we need a new generalized singular type Gronwall inequality with
mixed type singular integral operator. It will play an essential role in the study
of BVP for fractional differential equations.

Lemma 8 (Lemma3.2, [13]). Let y ∈ C(J,X) satisfy the following inequality:

∥y(t)∥ ≤ a+b

∫ t

0

∥y(θ)∥λ1dθ+c

∫ T

0

∥y(θ)∥λ2dθ+d

∫ t

0

∥yθ∥λ3
B dθ+e

∫ T

0

∥yθ∥λ4
B dθ, t ∈ J,

where λ1, λ3 ∈ [0, 1], λ2, λ4 ∈ [0, 1), a, b, c, d, e ≥ 0 are constants and ∥yθ∥B =
sup0≤s≤θ ∥y(s)∥. Then there exists a constant M∗ > 0 such that

∥y(t)∥ ≤ M∗.
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Using the above generalized Gronwall inequality, we can obtain the following
new generalized singular type Gronwall inequality.

Lemma 9 (Lemma 3.2, [23]). Let y ∈ C(J,X) satisfy the following inequality:

∥y(t)∥ ≤ a+ b

∫ t

0

(t− s)α−1∥y(s)∥λds+ c

∫ T

0

(T − s)α−1∥y(s)∥λds, (3)

where α ∈ (0, 1), λ ∈ [0, 1− 1
p ) for some 1 < p < 1

1−α , a, b, c ≥ 0 are constants.

Then there exists a constant M∗ > 0 such that

∥y(t)∥ ≤ M∗.

Proof. Let

x(t) =

{
1, ∥y(t)∥ ≤ 1,
y(t), ∥y(t)∥ > 1.

It follows from condition (3) and Hölder inequality that

∥x(t)∥λ ≤ ∥x(t)∥

≤ (a+ 1) + b

∫ t

0

(t− s)α−1∥x(s)∥λds+ c

∫ T

0

(T − s)α−1∥x(s)∥λds

≤ (a+ 1) + b

(∫ t

0

(t− s)p(α−1)ds

) 1
p
(∫ t

0

∥x(s)∥
λp
p−1 ds

) p−1
p

+ c

(∫ T

0

(T − s)p(α−1)ds

) 1
p
(∫ T

0

∥x(s)∥
λp
p−1 ds

) p−1
p

≤ (a+ 1) + b

[
T p(α−1)+1

p(α− 1) + 1

] 1
p
∫ t

0

∥x(s)∥
λp
p−1 ds

+ c

[
T p(α−1)+1

p(α− 1) + 1

] 1
p
∫ T

0

∥x(s)∥
λp
p−1 ds.

This implies that

∥x(t)∥ ≤ (a+ 1) + b

[
T p(α−1)+1

p(α− 1) + 1

] 1
p
∫ t

0

∥x(s)∥
λp
p−1 ds

+ c

[
T p(α−1)+1

p(α− 1) + 1

] 1
p
∫ T

0

∥x(s)∥
λp
p−1 ds,

where 0 < λp
p−1 < 1. By Lemma (3.1), one can complete the rest proof immedi-

ately. �

4. Existence result

Before stating and proving the main results, we introduce the following hy-
potheses.



198 K. Karthikeyan, C. Chandran and J.J. Trujillo

• (H1) The function f : J ×X ×X ×X → X is strongly measurable with
respect to t on J .

• (H2) There exists a constant α1 ∈ (0, α) and real-valued functions

m1(t),m2(t),m3(t) ∈ L
1

α1 (J,X) such that

∥f(t, x(t), (Gx)(t), (Sx)(t))− f(t, y(t), (Gy)(t), (Sy)(t))∥ ≤
m1(t)∥x− y∥+m2(t)∥Gx−Gy∥+m3(t)∥Sx− Sy∥, (4)

for each t ∈ J, and all x, y ∈ X.

• (H3) There exists a constant α2 ∈ (0, α) and real-valued function h(t) ∈
L

1
α2 (J,X) such that

∥f(t, y, (Gy), (Sy)∥ ≤ h(t), for each t ∈ J, and all y ∈ X.

For brevity, let M = ∥m1 + γ0m2 + γ1m3∥
L

1
α1 (J,X)

, H = ∥h∥
L

1
α2 (J,X)

.

• (H4) The function f : J ×X ×X → X is continuous.
• (H5) There exist constants λ ∈ [0, 1 − 1

p ) for some 1 < p < 1
1−α and

N > 0 such that

∥f(t, u,Gu, Su)∥ ≤ N(1 + γ0∥u∥λ + γ1∥u∥λ) for each t ∈ J and all u ∈ X.

• (H6) For every t ∈ J , the set
K =

{
(t− s)α−1f(s, y(s), (Gy)(s), (Sy)(s)) : y ∈ C(J,X), s ∈ [0, t])

}
is

relatively compact.

Our first result is based on Banach contraction principle.

Theorem 2. Assume that (H1)–(H3) hold. If

Ωα,T =
MTα−α1

Γ(α)(α−α1

1−α1
)1−α1

(
1 +

|b|
|a+ b|

)
< 1, (5)

then the system (1)has a unique solution on J .

Proof. For each t ∈ J , we have∫ t

0

∥∥(t− s)α−1f(s, y(s), (Gy)(s), (Sy)(s))
∥∥ ds ≤

(∫ t

0
(t− s)

α−1
1−α2 ds

)1−α2
(∫ t

0
(h(s))

1
α2 ds

)α2

≤
Tα−α2H

(α−α2
1−α2

)1−α2

Thus, ∥(t−s)α−1f(s, y(s), (Gy)(s), (Sy)(s))∥ is Lebesgue integrable with respect
to s ∈ [0, t] for all t ∈ J and x ∈ C(J,X). Then (t−s)α−1f(s, y(s), Gy(s), Sy(s))
is Bochner integrable with respect to s ∈ [0, t] for all t ∈ J due to Lemma 5.
Hence, the fractional BVP (1) is equivalent to the following fractional integral
equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), (Gy)(s), (Sy)(s))ds
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− 1

a+ b

[
b

Γ(α)

∫ T

0

(T − s)α−1f(s, y(s), (Gy)(s), (Sy)(s))ds− c

]
, t ∈ J.

Let

r ≥ Tα−α2H

Γ(α)(α−α2

1−α2
)1−α2

+
|b|

|a+ b|
× Tα−α2H

Γ(α)(α−α2

1−α2
)1−α2

+
|c|

|a+ b|
.

Now we define the operator F on Br := {y ∈ C(J,X) : ∥y∥ ≤ r} as follows

(Fy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), (Gy)(s), (Sy)(s))ds

− 1

a+ b

[
b

Γ(α)

∫ T

0

(T − s)α−1f(s, y(s), (Gy)(s), (Sy)(s))ds− c

]
, t ∈ J.

Therefore, the existence of a solution of the fractional BVP (1) is equivalent to
that the operator F has a fixed point on Br. We shall use the Banach contraction
principle to prove that F has a fixed point. The proof is divided into two steps.

Step 1. Fy ∈ Br for every y ∈ Br For every y ∈ Br and any δ > 0, by (H3)
and Hölder inequality, we get

∥(Fy)(t+ δ)− (Fy)(t)∥

≤
∥∥∥∥ 1

Γ(α)

∫ t

0

[(t+ δ − s)α−1 − (t− s)α−1]f(s, y(s), (Gy)(s), (Sy)(s))ds

∥∥∥∥
+

∥∥∥∥∥ 1

Γ(α)

∫ t+δ

t

(t+ δ − s)α−1f(s, y(s), (Gy)(s), (Sy)(s))ds

∥∥∥∥∥
≤ 1

Γ(α)

∫ t

0

[(t− s)α−1 − (t+ δ − s)α−1]∥f(s, y(s), (Gy)(s), (Sy)(s))∥ds

+
1

Γ(α)

∫ t+δ

t

(t+ δ − s)α−1∥f(s, y(s), (Gy)(s), (Sy)(s))∥ds

≤ 1

Γ(α)

∫ t

0

[(t− s)α−1 − (t+ δ − s)α−1]h(s)ds

+
1

Γ(α)

∫ t+δ

t

(t+ δ − s)α−1h(s)ds

≤ 1

Γ(α)

(∫ t

0

[(t− s)
α−1
1−α2 − (t+ δ − s)

α−1
1−α2 ]ds

)1−α2 (∫ t

0

(h(s))
1

α2 ds

)α2

+
1

Γ(α)

(∫ t+δ

t

(t+ δ − s)
α−1
1−α2 ds

)1−α2
(∫ t+δ

t

(h(s))
1

α2 ds

)α2

≤ H

Γ(α)

(
t
α−α2
1−α2

α−α2

1−α2

+
δ

α−α2
1−α2

α−α2

1−α2

− (t+ δ)
α−α2
1−α2

α−α2

1−α2

)1−α2

+
H

Γ(α)

(
δ

α−α2
1−α2

α−α2

1−α2

)1−α2
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≤ H

Γ(α)(α−α2

1−α2
)1−α2

[
(t

α−α2
1−α2 − (t+ δ)

α−α2
1−α2 + δ

α−α2
1−α2 )1−α2 + δα−α2

]
≤ 2Hδα−α2

Γ(α)(α−α2

1−α2
)1−α2

.

As δ → 0, the right-hand side of the above inequality tends to zero. Therefore,
F is continuous on J , i.e., Fy ∈ C(J,X). Moreover, for y ∈ Br and all t ∈ J ,
we get

∥(Fy)(t)∥ ≤ 1

Γ(α)

∫ t

0

(t− s)α−1∥f(s, y(s), (Gy)(s), (Sy)(s))∥ds

+
|b|

|a+ b|Γ(α)

∫ T

0

(T − s)α−1∥f(s, y(s), (Gy)(s), (Sy)(s))∥ds+ |c|
|a+ b|

≤ 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

+
|b|

|a+ b|Γ(α)

∫ T

0

(T − s)α−1h(s)ds+
|c|

|a+ b|

≤ 1

Γ(α)

(∫ t

0

(t− s)
α−1
1−α2 ds

)1−α2
(∫ t

0

(h(s))
1

α2 ds

)α2

+
|b|

|a+ b|Γ(α)

(∫ T

0

(T − s)
α−1
1−α2 ds

)1−α2 (∫ T

0

(h(s))
1

α2 ds

)α2

+
|c|

|a+ b|

≤ Tα−α2H

Γ(α)(α−α2
1−α2

)1−α2
+

|b|
|a+ b| ×

Tα−α2H

Γ(α)(α−α2
1−α2

)1−α2
+

|c|
|a+ b|

≤ r,

which implies that ∥Fy∥∞ ≤ r. Thus, we can conclude that for all y ∈ Br,
Fy ∈ Br. i.e., F : Br → Br.

Step 2. F is a contraction mapping on Br. For x, y ∈ Br and any t ∈ J ,
using (H2) and Hölder inequality, we get

∥(Fx)(t)− (Fy)(t)∥

≤
1

Γ(α)

∫ t

0
(t− s)α−1∥f(s, x(s), (Gx)(s), (Sx)(s))− f(s, y(s), (Gy)(s), (Sy)(s))∥ds

+
|b|

|a+ b|Γ(α)

∫ T

0
(T − s)α−1∥f(s, x(s), (Gx)(s), (Sx)(s))− f(s, y(s), (Gy)(s), (Sy)(s))∥ds

≤
1

Γ(α)

∫ t

0
(t− s)α−1m1(s)∥x(s)− y(s)∥+m2(s)∥Gx(s)−Gy(s)∥

+m3(s)∥Sx(s)− Sy(s)∥ds

+
|b|

|a+ b|Γ(α)

∫ T

0
(T − s)α−1m1(s)∥x(s)− y(s)∥+m2(s)∥Gx(s)−Gy(s)∥

+m3(s)∥Sx(s)− Sy(s)∥ds

≤
∥x− y∥∞

Γ(α)

∫ t

0
(t− s)α−1[m1(s) + γ0m2(s) + γ1m3(s)]ds

+
|b|∥x− y∥∞
|a+ b|Γ(α)

∫ T

0
(T − s)α−1[m1(s) + γ0m2(s) + γ1m3(s)]ds
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≤
∥x− y∥∞

Γ(α)

(∫ t

0
(t− s)

α−1
1−α1 ds

)1−α1
(∫ t

0
([m1(s) + γ0m2(s) + γ1m3(s)])

1
α1 ds

)α1

+
|b| ∥x− y∥∞
|a+ b|Γ(α)

(∫ T

0
(T − s)

α−1
1−α1 ds

)1−α1 (∫ T

0
([m1(s) + γ0m2(s) + γ1m3(s)])

1
α1 ds

)α1

≤
∥x− y∥∞

Γ(α)

Tα−α1

(α−α1
1−α1

)1−α1
∥[m1(s) + γ0m2(s) + γ1m3(s)]∥

L
1

α1 (J,R+)

+
|b|∥x− y∥∞
|a+ b|Γ(α)

Tα−α1

(α−α1
1−α1

)1−α1
∥[m1(s) + γ0m2(s) + γ1m3(s)]∥

L
1

α1 (J,R+)

≤
[

MTα−α1

Γ(α)(α−α1
1−α1

)1−α1

(
1 +

|b|
|a+ b|

)]
∥x− y∥∞.

So we obtain

∥Fx− Fy∥∞ ≤ Ωα,T ∥x− y∥∞.

Thus, F is a contraction due to the condition (5).
By Banach contraction principle, we can deduce that F has an unique fixed

point which is just the unique solution of the fractional BVP (1). �

Our second result is based on the well known Schaefer’s fixed point theorem.

Theorem 3. Assume that (H4)–(H6) hold. Then the fractional BVP (1) has
at least one solution on J .

Proof. Transform the fractional BVP (1) into a fixed point problem. Consider
the operator F : C(J,X) → C(J,X) defined as (6). It is obvious that F is well
defined due to (H4). For the sake of convenience, we subdivide the proof into
several steps.
Step 1. F is continuous.

Let {yn} be a sequence such that yn → y in C(J,X). Then for each t ∈ J ,
we have

∥(Fyn)(t)− (Fy)(t)∥

≤
1

Γ(α)

∫ t

0
(t− s)α−1∥f(s, yn(s), (Gy)n(s), (Sy)n(s))− f(s, y(s), (Gy)(s), (Sy)(s))∥ds

+
|b|

|a+ b|Γ(α)

∫ T

0
(T − s)α−1∥f(s, yn(s), (Gy)n(s), (Sy)n(s))− f(s, y(s), (Gy)(s), (Sy)(s))∥ds

≤
∥f(·, yn(·))− f(·, y(·))∥∞

Γ(α)

[∫ t

0
(t− s)α−1ds+

|b|
|a+ b|

∫ T

0
(T − s)α−1ds

]
≤

Tα

Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
∥f(·, yn(·))− f(·, y(·))∥∞.

Since f is continuous, we have

∥Fyn − Fy∥∞ ≤ Tα

Γ(α+ 1)

(
1 +

|b|
|a+ b|

)
× ∥f(·, yn(·), (Gy)n(·), (Sy)n(·))− f(·, y(·), (Gy)(·), (Sy)(·))∥∞ → 0

as n → ∞.

Step 2. F maps bounded sets into bounded sets in C(J,X).
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Indeed, it is enough to show that for any η∗ > 0, there exists a ℓ > 0 such
that for each y ∈ Bη∗ = {y ∈ C(J,X) : ∥y∥∞ ≤ η∗}, we have ∥Fy∥∞ ≤ ℓ.

For each t ∈ J , we get

∥(Fy)(t)∥ ≤ 1

Γ(α)

∫ t

0

(t− s)α−1∥f(s, y(s), (Gy)(s), (Sy)(s))∥ds

+
|b|

|a+ b|Γ(α)

∫ T

0

(T − s)α−1∥f(s, y(s), (Gy)(s), (Sy)(s))∥ds+ |c|
|a+ b|

≤
[N(1 + γ0∥y∥λ + γ1∥y∥λ)

Γ(α)

∫ t

0

(t− s)α−1ds
]

+
[ |b|N(1 + γ0∥y∥λ + γ1∥y∥λ)

|a+ b|Γ(α)

∫ T

0

(T − s)α−1ds
]
+

|c|
|a+ b|

≤
[N(1 + γ0(η

∗)λ + γ1(η
∗)λ)

Γ(α)

∫ t

0

(t− s)α−1ds
]

+
[ |b|N(1 + γ0(η

∗)λ + γ1(η
∗)λ)

|a+ b|Γ(α)

∫ T

0

(T − s)α−1ds
]
+

|c|
|a+ b|

+
[N(1 + γ0(η

∗)λ + γ1(η
∗)λ)

Γ(α)

∫ t

0

(t− s)α−1ds
]

+
[ |b|N(1 + γ0(η

∗)λ + γ1(η
∗)λ)

|a+ b|Γ(α)

∫ T

0

(T − s)α−1ds
]

≤
[TαN(1 + γ0(η

∗)λ + γ1(η
∗)λ)

Γ(α+ 1)
+

|b|TαN(1 + γ0(η
∗)λ + γ1(η

∗)λ)

|a+ b|Γ(α+ 1)

]
+

|c|
|a+ b|

+
[TαN(1 + γ0(η

∗)λ + γ1(η
∗)λ)

Γ(α+ 1)

]
+
[ |b|TαN(1 + γ0(η

∗)λ + γ1(η
∗)λ)

|a+ b|Γ(α+ 1)

]
,

which implies that

∥Fy∥∞ ≤
[TαN(1 + γ0(η

∗)λ + γ1(η
∗)λ)

Γ(α+ 1)

(
1 +

|b|
|a+ b|

)]
+

|c|
|a+ b|

+
[TαN(1 + γ0(η

∗)λ + γ1(η
∗)λ)

Γ(α+ 1)

(
1 +

|b|
|a+ b|

)]
:= ℓ.

Step 3. F maps bounded sets into equicontinuous sets of C(J,X).
Let 0 ≤ t1 < t2 ≤ T , y ∈ Bη∗ . Using (H5), we have

∥(Fy)(t2)− (Fy)(t1)∥

≤ 1

Γ(α)

∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1]∥f(s, y(s), (Gy)(s), (Sy)(s))∥ds
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+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1∥f(s, y(s), (Gy)(s), (Sy)(s))∥ds

≤
[N(1 + γ0∥y∥λ + γ1∥y∥λ)

Γ(α)

∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1](1 + ∥y(s)∥λ)ds
]

+ (γ0 + γ1)
[ N

Γ(α)

∫ t2

t1

(t2 − s)α−1(1 + ∥y(s)∥λ)ds
]

≤
[N(1 + γ0(η

∗)λ + γ1(η
∗)λ)

Γ(α)

∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1]ds
]

+
[N(1 + γ0(η

∗)λ + γ1(η
∗)λ)

Γ(α)

∫ t2

t1

(t2 − s)α−1ds
]

≤
[N(1 + γ0(η

∗)λ + γ1(η
∗)λ)

Γ(α+ 1)
(|tα1 − tα2 |+ 2(t2 − t1)

α)
]

≤ (1 + γ0(η
∗)λ + γ1(η

∗)λ)
[3N(1 + γ0(η

∗)λ + γ1(η
∗)λ)(t2 − t1)

α

Γ(α+ 1)

]
.

As t2 → t1, the right-hand side of the above inequality tends to zero, therefore
F is equicontinuous.

Now, let {yn}, n = 1, 2, · · · be a sequence on Bη∗ , and

(Fyn)(t) = (F1yn)(t) + (F2yn)(T ), t ∈ J.

where

(F1yn)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, yn(s), (Gy)n(s), (Sy)n(s))ds, t ∈ J,

(F2yn)(T ) = − 1

a+ b

[
b

Γ(α)

∫ T

0

(T − s)α−1f(s, yn(s), (Gy)n(s), (Sy)n(s))ds− c

]
.

In view of the condition (H6) and Lemma 6, we know that convK is compact.
For any t∗ ∈ J ,

(F1yn)(t
∗) =

1

Γ(α)

∫ t∗

0

(t∗ − s)α−1f(s, yn(s), (Gy)n(s), (Sy)n(s))ds

=
1

Γ(α)
lim
k→∞

k∑
i=1

t∗

k

(
t∗ − it∗

k

)α−1

f

(
it∗

k
, yn(

it∗

k
), (Gyn)(

it∗

k
), (Syn)(

it∗

k
)

)
=

t∗

Γ(α)
ξ̃n,

where

ξ̃n = lim
k→∞

k∑
i=1

1

k
(t∗ − it∗

k
)α−1f

(
it∗

k
, yn(

it∗

k
), (Gyn)(

it∗

k
), (Syn)(

it∗

k
)

)
.

Since convK is convex and compact, we know that ξ̃n ∈ convK. Hence,
for any t∗ ∈ J , the set {(F1yn)(t

∗)} is relatively compact. From Lemma 7,
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every {(F1yn)(t)} contains a uniformly convergent subsequence {(F1ynk
)(t)},

k = 1, 2, · · · on J . Thus, the set {F1y : y ∈ Bη∗} is relatively compact. Simi-
larly, one can obtain {(F2yn)(T )} contains a uniformly convergent subsequence
{(F2ynk

)(T )}, k = 1, 2, · · · . Thus, the set {F2y : y ∈ Bη∗} is relatively compact.
As a result, the set {Fy, y ∈ Bη∗} is relatively compact.

As a consequence of Step 1–3, we can conclude that F is continuous and
completely continuous.

Step 4. A priori bounds.
Now it remains to show that the set

E(F ) = {y ∈ C(J,X) : y = λFy, for some λ ∈ (0, 1)}
is bounded.

Let y ∈ E(F ), then y = λFy for some λ ∈ (0, 1). Thus, for each t ∈ J , we
have

y(t) =λ

(
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), (Sy)(s))ds

− 1

a+ b

[
b

Γ(α)

∫ T

0

(T − s)α−1f(s, y(s), (Sy)(s))ds− c

])
.

For each t ∈ J , we have

∥y(t)∥ ≤ NTα

Γ(α+ 1)
+
[ |b|TαN(1 + γ0(η

∗)λ + γ1(η
∗)λ)

|a+ b|Γ(α+ 1)

]
+

|c|
|a+ b|

+
[N(1 + γ0(η

∗)λ + γ1(η
∗)λ)

Γ(α)

∫ t

0

(t− s)α−1ds
]

+
[ |b|N(1 + γ0(η

∗)λ + γ1(η
∗)λ)

|a+ b|Γ(α)

∫ T

0

(T − s)α−1ds
]
.

By Lemma 9, there exists a M∗ > 0 such that

∥y(t)∥ ≤ M∗, t ∈ J.

Thus for every t ∈ J , we have

∥y∥∞ ≤ M∗.

This shows that the set E(F ) is bounded. As a consequence of Schaefer’s fixed
point theorem, we deduce that F has a fixed point which is a solution of the
fractional BVP (1). �
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