Abstract
In the sixth grade mathematics, drawing of development figures of the triangular prism and the quadrangular prism is recommended in terms of the creativity. In this sense, the teacher has the need to check in advance all the possible development figures of the triangular prism and the quadrangular prism before teaching on them. However, previous studies that currently give all the possible development figures of the triangular prism and the quadrangular prism are hard to find. For this reason, in this paper, as a study of teaching materials for the professional development of elementary school teachers, the method of finding all the possible development figures of the triangular prism and all the possible development figures of the quadrangular prism without omissions and overlaps and the number of each of development figures which can be obtained by that method are discussed. Here lengths of the three sides of base planes of the triangular prism are different each other and lengths of the four sides of base planes of the quadrangular prism are different each other. This discussion is needed in terms of a study of teaching materials in order to prepare for predictable questions to ask the number of the possible development figures of the triangular prism and the number of the possible development figures of the quadrangular prism in classes. In addition, through this discussion, this paper presents the development figures of the triangular prism and the development figures of the quadrangular prism without omissions and overlaps. And teachers can take advantage of them for determining the correctness of the development figures drew by students and guiding students to draw the development figures creatively in actual classes.
수학 6-1 지도서에 따르면, 6학년 수학에서 삼각기둥과 사각기둥의 전개도 그리기는 창의라는 측면에서 권장된다. 이런 점에서 교사는 수업에 앞서 삼각기둥과 사각기둥의 가능한 전개도를 확인해 둘 필요가 있다. 그러나 그 전개도 전부를 제시해 주고 있는 선행 연구는 찾기 어렵다. 이런 이유에서, 본 논문에서는 교사의 전문성 신장을 위한 교재 연구의 일환으로, 밑면(삼각형)의 세 변의 길이가 서로 다른 삼각기둥의 가능한 전개도와 밑면(사각형)의 네 변의 길이가 서로 다른 사각기둥의 가능한 전개도를 찾을 수 있는 방법과 그 각각의 전개도의 수에 관해 논의하고 있다. 이러한 논의는 수업에서 삼각기둥과 사각기둥의 서로 다른 전개도의 수를 묻는 질문에 답할 수 있기 위해, 교재 연구의 차원에서 필요하다. 본 논문에서 제시하는 삼각기둥과 사각기둥의 전개도를 학생들이 그린 전개도의 올바름을 판단하거나, 학생들이 전개도를 창의적으로 그리도록 안내하는데 활용할 수 있다.