Chemoquiescence with Molecular Targeted Ablation of Cancer Stem Cells in Gastrointestinal Cancers

  • Jong-Min Park (CHA Cancer Prevention Research Center, CHA University) ;
  • Young-Min Han (CHA Cancer Prevention Research Center, CHA University) ;
  • Migyeong Jeong (CHA Cancer Prevention Research Center, CHA University) ;
  • Eun Jin Go (CHA Cancer Prevention Research Center, CHA University) ;
  • Napapan Kangwan (Department of Biochemistry, University of Phayao) ;
  • Woo Sung Kim (CHA Cancer Prevention Research Center, CHA University) ;
  • Ki Baik Hahm (CHA Cancer Prevention Research Center, CHA University)
  • Received : 2016.04.05
  • Accepted : 2016.06.16
  • Published : 2016.06.30

Abstract

The abundance of multi-drug resistance ATPase binding cassette and deranged self-renewal pathways shown in cancer stem cells (CSCs) played a crucial role in tumorigenesis, tumor resistance, tumor recurrence, and tumor metastasis. Therefore, elucidation of CSCs biology can improve diagnosis, enable targeted treatment, and guide the follow up of GI cancer patients. In order to achieve chemoquiescence, seizing cancer through complete ablation of CSCs, CSCs are rational targets for the design of interventions that will enhance responsiveness to traditional therapeutic strategies and contribute in the prevention of local recurrence as well as metastasis. However, current cancer treatment strategies fail to either detect or differentiate the CSCs from their non-tumorigenic progenies mostly due to the absence of specific biomarkers and potent agents to kill CSCs. Recent advances in knowledge of CSCs enable to produce several candidates to ablate CSCs in gastrointestinal (GI) cancers, especially cancers originated from inflammation-driven mutagenesis such as Barrett's esophagus (BE), Helicobacter pylori-associated gastric cancer, and colitis-associated cancer (CAC). Our research teams elucidated through revisiting old drugs that proton pump inhibitor (PPI) and potassium competitive acid blocker (p-CAB) beyond authentic acid suppression, chloroquine for autophage inhibition, sonic hedgehog (SHH) inhibitors, and Wnt/β-catenin/NOTCH inhibitor can ablate CSCs specifically and efficiently. Furthermore, nanoformulations of these molecules could provide an additional advantage for more selective targeting of the pathways existing in CSCs just like current molecular targeted therapeutics and sustained action, while normal stem cells intact. In this review article, the novel approach specifically to ablate CSCs existing in GI cancers will be introduced with the introduction of explored mode of action.

Keywords

Acknowledgement

Supported by This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014 R1A1A2058732)

References

  1. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol 2012;44:2144-2151.
  2. Saikawa Y, Fukuda K, Takahashi T, Nakamura R, Takeuchi H, Kitagawa Y. Gastric carcinogenesis and the cancer stem cell hypothesis. Gastric Cancer 2010;13:11-24.
  3. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014;14:275-291.
  4. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-111.
  5. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367:645-648.
  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983-3988.
  7. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821-5828.
  8. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005;5:744-749.
  9. Diehn M, Clarke MF. Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst 2006;98:1755-1757.
  10. Todaro M, Francipane MG, Medema JP, Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology 2010;138:2151-2162.
  11. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science 2007;317:337.
  12. Wang X, Jung YS, Jun S, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun 2016;7:10633.
  13. Mery B, Guy JB, Espenel S, et al. Targeting head and neck tumoral stem cells: From biological aspects to therapeutic perspectives. World J Stem Cells 2016;8:13-21.
  14. Alison MR, Lim SM, Nicholson LJ. Cancer stem cells: problems for therapy? J Pathol 2011;223:147-161.
  15. Alison MR, Islam S, Wright NA. Stem cells in cancer: instigators and propagators? J Cell Sci 2010;123:2357-2368.
  16. Johnstone A. Oesophagitis and Peptic Ulcer of the Oesophagus: The Mackenzie Davidson Memorial Lecture. The British journal of radiology 1955;28:229-240.
  17. Naef AP, Savary M, Ozzello L. Columnar-lined lower esophagus: an acquired lesion with malignant predisposition. Report on 140 cases of Barrett's esophagus with 12 adenocarcinomas. J Thorac Cardiovasc Surg 1975;70:826-835.
  18. Nakagawa H, Whelan K, Lynch JP. Mechanisms of Barrett's oesophagus: intestinal differentiation, stem cells, and tissue models. Best Pract Res Clin Gastroenterol 2015;29:3-16.
  19. Meng W, Bai B, Sheng L, et al. Role of Helicobacter pylori in gastric cancer: advances and controversies. Discov Med 2015;20:285-293.
  20. Amieva M, Peek RM, Jr. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology 2016;150:64-78.
  21. Hoffmann W. Current Status on Stem Cells and Cancers of the Gastric Epithelium. Int J Mol Sci 2015;16:19153-19169.
  22. Bessede E, Dubus P, Megraud F, Varon C. Helicobacter pylori infection and stem cells at the origin of gastric cancer. Oncogene 2015;34:2547-2555.
  23. Choi YJ, Kim N, Chang H, et al. Helicobacter pylori-induced epithelial-mesenchymal transition, a potential role of gastric cancer initiation and an emergence of stem cells. Carcinogenesis 2015;36:553-563.
  24. Zhao Y, Feng F, Zhou YN. Stem cells in gastric cancer. World J Gastroenterol 2015;21:112-123.
  25. Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells 2012;30:363-371.
  26. Sporn MB, Dunlop NM, Newton DL, Smith JM. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 1976;35:1332-1338.
  27. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 2003;3:768-780.
  28. Khan N, Bharali DJ, Adhami VM, et al. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 2014;35:415-423.
  29. Papi A, Farabegoli F, Iori R, et al. Vitexin-2-O-xyloside, rapha satin and (-)-epigallocatechin-3-gallate synergistically affect cell growth and apoptosis of colon cancer cells. Food Chem 2013;138:1521-1530.
  30. Yang SF, Yang WE, Chang HR, Chu SC, Hsieh YS. Luteolin induces apoptosis in oral squamous cancer cells. J Dent Res 2008;87:401-406.
  31. Lim do Y, Jeong Y, Tyner AL, Park JH. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastrointest Liver Physiol 2007;292:G66-75.
  32. Choi KS, Song H, Kim EH, et al. Inhibition of Hydrogen Sulfide-induced Angiogenesis and Inflammation in Vascular Endothelial Cells: Potential Mechanisms of Gastric Cancer Prevention by Korean Red Ginseng. J Ginseng Res 2012;36:135-145.
  33. Park JM, Han YM, Kangwan N, et al. S-allyl cysteine alleviates nonsteroidal anti-inflammatory drug-induced gastric mucosal damages by increasing cyclooxygenase-2 inhibition, heme oxygenase-1 induction, and histone deacetylation inhibition. J Gastroenterol Hepatol 2014;29 Suppl 4:80-92.
  34. Jeong M, Park JM, Han YM, et al. Dietary prevention of Helicobacter pylori-associated gastric cancer with kimchi. Oncotarget 2015;6:29513-29526.
  35. Balic A, Sorensen MD, Trabulo SM, et al. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol Cancer Ther 2014;13:1758-1771.
  36. Kangwan N, Kim YJ, Han YM, et al. Sonic hedgehog inhibitors prevent colitis-associated cancer via orchestrated mechanisms of IL-6/gp130 inhibition, 15-PGDH induction, Bcl-2 abrogation, and tumorsphere inhibition. Oncotarget 2015;
  37. Bandhavkar S. Cancer stem cells: a metastasizing menace! Cancer Med 2016;
  38. Sugihara E, Saya H. Complexity of cancer stem cells. Int J Cancer 2013;132:1249-1259.
  39. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001;15:3059-3087.
  40. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev 2008;22:2454-2472.
  41. Krauss S, Concordet JP, Ingham PW. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 1993;75:1431-1444.
  42. Echelard Y, Epstein DJ, St-Jacques B, et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993;75: 1417-1430.
  43. Riddle RD, Johnson RL, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993;75:1401-1416.
  44. Scholpp S, Wolf O, Brand M, Lumsden A. Hedgehog signal-ling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon. Development 2006;133:855-864.
  45. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004;432:324-331.
  46. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007;17:165-172.
  47. Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007;25:2524-2533.
  48. Dierks C, Beigi R, Guo GR, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008;14:238-249.
  49. Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006;66:6063-6071.
  50. Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007;67:2187-2196.
  51. Peacock CD, Wang Q, Gesell GS, et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007;104:4048-4053.
  52. Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009;458:776-779.
  53. Ruiz i Altaba A, Mas C, Stecca B. The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 2007;17:438-447.
  54. Apionishev S, Katanayeva NM, Marks SA, Kalderon D, Tomlinson A. Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol 2005;7:86-92.
  55. Yauch RL, Gould SE, Scales SJ, et al. A paracrine requirement for hedgehog signalling in cancer. Nature 2008;455:406-410.
  56. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-715.
  57. Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 2010;102:340-351.
  58. Pannuti A, Foreman K, Rizzo P, et al. Targeting Notch to target cancer stem cells. Clin Cancer Res 2010;16:3141-3152.
  59. Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 2010;16:3153-3162.
  60. Manicke NE, Dill AL, Ifa DR, Cooks RG. High-resolution tissue imaging on an orbitrap mass spectrometer by desorption electrospray ionization mass spectrometry. J Mass Spectrom 2010;45:223-226.
  61. Taipale J, Chen JK, Cooper MK, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 2000;406:1005-1009.
  62. Batsaikhan BE, Yoshikawa K, Kurita N, et al. Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Res 2014;34:6339-6344.
  63. Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med 2013;19:428-446.
  64. Pascolo S. Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol 2016;771:139-144.
  65. Vazquez-Martin A, Lopez-Bonetc E, Cufi S, et al. Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resist Updat 2011;14:212-223.
  66. Song YJ, Zhang SS, Guo XL, et al. Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 2013;339:70-81.
  67. Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Vellon L, Menendez JA. Autophagy positively regulates the CD44(+) CD24(-/low) breast cancer stem-like phenotype. Cell Cycle 2011;10:3871-3885.
  68. Gong C, Bauvy C, Tonelli G, et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 2013;32:2261-2272, 2272e 2261-2211.
  69. Bellodi C, Lidonnici MR, Hamilton A, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 2009;119:1109-1123.
  70. Wei MF, Chen MW, Chen KC, et al. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy 2014;10:1179-1192.
  71. Choi DS, Blanco E, Kim YS, et al. Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. Stem Cells 2014;32:2309-2323.
  72. Firat E, Weyerbrock A, Gaedicke S, Grosu AL, Niedermann G. Chloroquine or chloroquine-PI3K/Akt pathway inhibitor combinations strongly promote gamma-irradiation-induced cell death in primary stem-like glioma cells. PLoS One 2012;7:e47357.