References
- Breiman, L. (1995). Better subset regression using the nonnegative garrote, Technometrics, 37, 373-384. https://doi.org/10.1080/00401706.1995.10484371
- Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classication and Regression Trees, Wadsworth, Belmont.
- Chang, Y. J. (2014). Multi-step quantile regression tree, Journal of Statistical Computation and Simulation, 84, 663-682. https://doi.org/10.1080/00949655.2012.721886
- Chaudhuri, P. and Loh, W. Y. (2002). Nonparametric estimation of conditional quantiles using quantile regression trees, Bernoulli, 8, 561-576.
- Eo, S. H. and Cho, H. (2014). Tree-structured mixed-effects regression modeling for longitudinal data, Journal of Computational and Graphical Statistics, 23, 740-760. https://doi.org/10.1080/10618600.2013.794732
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Hallin, M., Lu, Z., and Yu, K. (2009). Local linear spatial quantile regression, Bernoulli, 15, 659-686. https://doi.org/10.3150/08-BEJ168
- Hothorn, T., Hornik, K., and Zeileis, A. (2006). Unbiased recursive partitioning a conditional inference framework, Journal of Computational and Graphical Statistics, 15, 651-674. https://doi.org/10.1198/106186006X133933
- Kim, H., Loh, W. Y., Shih, Y. S., and Chaudhuri, P. (2007). Visualizable and interpretable regression models with good prediction power, IIE Transactions, 39, 565-579. https://doi.org/10.1080/07408170600897502
- Kim, S. and Xing, E. P. (2012). Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL mapping, The Annals of Applied Statistics, 6, 1095-1117. https://doi.org/10.1214/12-AOAS549
- Koenker, R. (2004). Quantile regression for longitudinal data, Journal of Multivariate Analysis, 91, 74-89. https://doi.org/10.1016/j.jmva.2004.05.006
- Koenker, R. (2005). Quantile Regression. Cambridge university press, New York.
- Koenker, R. and Bassett, Jr, G. (1978). Regression quantiles, Econometrica: Journal of the Econometric Society, 46, 33-50. https://doi.org/10.2307/1913643
- Koenker R. and Mizera, I. (2004). Penalized triograms: total variation regularization for bivariate smoothing, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66, 145-163. https://doi.org/10.1111/j.1467-9868.2004.00437.x
- Li, Y., Liu, Y., and Zhu, J. (2007). Quantile regression in reproducing kernel Hilbert spaces. Journal of the American Statistical Association, 102, 255-268. https://doi.org/10.1198/016214506000000979
- Liu, Y. and Wu, Y. (2011). Simultaneous multiple non-crossing quantile regression estimation using kernel constraints, Journal of Nonparametric Statistics, 23, 415-437. https://doi.org/10.1080/10485252.2010.537336
- Loh, W. Y. (2002). Regression trees with unbiased variable selection and interaction detection, Statistica Sinica, 12, 361-386.
- Loh, W. Y. (2009). Improving the precision of classification trees, Annals of Applied Statistics, 3, 1710-1737. https://doi.org/10.1214/09-AOAS260
- Quinlan, J. R. (1993). C4.5: Programming for Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco.
- Shen, X. and Ye, J. (2002). Adaptive model selection, Journal of the American Statistical Association, 97, 210-221. https://doi.org/10.1198/016214502753479356
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), 58, 267-288.
- Wu, Y. and Liu, Y. (2009). Variable selection in quantile regression, Statistica Sinica, 19, 801-817.
- Yu, K. and Jones, M. C. (1998). Local linear quantile regression, Journal of the American Statistical Association, 93, 228-237. https://doi.org/10.1080/01621459.1998.10474104
- Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729