참고문헌
- Bandeen, R. K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes, Journal of the American Statistical Association, 92, 1375-1386. https://doi.org/10.1080/01621459.1997.10473658
- Benaglia, T., Chauveau, D., Hunter, D., and Young, D. (2009). mixtools: an R package for analyzing finite mixture models, Journal of Statistical Software, 32, 1-29.
- DeSarbo, W. S. and Cron, W. L. (1988). A maximum likelihood methodology for clusterwise linear regression, Journal of Classification, 5, 249-282. https://doi.org/10.1007/BF01897167
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B (Methodological), 39, 1-38.
- Ingrassia, S., Minotti, S., and Vittadini, G. (2012). Local statistical modeling via the cluster-weighted approach with elliptical distributions, Journal of Classification, 29, 363-401. https://doi.org/10.1007/s00357-012-9114-3
- Ingrassia, S., Minotti, S., and Punzo, A. (2014). Model-based clustering via linear cluster-weighted models, Computational Statistics and Data Analysis, 71, 159-182. https://doi.org/10.1016/j.csda.2013.02.012
- Hennig, C. (2000). Identifiability of models for clusterwise linear regression, Journal of Classification, 17, 273-296. https://doi.org/10.1007/s003570000022
- Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures of local experts, Neural Computation, 3, 79-87. https://doi.org/10.1162/neco.1991.3.1.79
- Leisch, F. (2004). FlexMix: a general framework for finite mixture models and latent glass regression in R, Journal of Statistical Software, 11, 1-18.
- Mclachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extension, Wiley, New York.
- Punzo, A. (2014). Flexible mixture modeling with the polynomial Gaussian cluster-weighted model, Statistical Modelling, 14, 257-291. https://doi.org/10.1177/1471082X13503455
- Quandt, R. and Ramsey, J. (1978). Estimating mixtures of normal distributions and switching regressions, Journal of the American Statistical Association, 73, 730-738. https://doi.org/10.1080/01621459.1978.10480085
- Redner, R. A. and Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM algorithm, SIAM Review, 26, 195-239. https://doi.org/10.1137/1026034
- Subedi, S., Punzo, A., Ingrassia, S., and McNicholas, P. (2013). Clustering and classification via clusterweighted factor analyzers, Advances in Data Analysis and Classification, 7, 5-40. https://doi.org/10.1007/s11634-013-0124-8