DOI QR코드

DOI QR Code

Estimation methods and interpretation of competing risk regression models

경쟁 위험 회귀 모형의 이해와 추정 방법

  • Kim, Mijeong (Department of Statistics, Ewha Womans University)
  • Received : 2016.07.18
  • Accepted : 2016.10.07
  • Published : 2016.12.31

Abstract

Cause-specific hazard model (Prentice et al., 1978) and subdistribution hazard model (Fine and Gray, 1999) are mostly used for the right censored survival data with competing risks. Some other models for survival data with competing risks have been subsequently introduced; however, those models have not been popularly used because the models cannot provide reliable statistical estimation methods or those are overly difficult to compute. We introduce simple and reliable competing risk regression models which have been recently proposed as well as compare their methodologies. We show how to use SAS and R for the data with competing risks. In addition, we analyze survival data with two competing risks using five different models.

경쟁위험에 대한 연구 중 주로 쓰이는 방법은 Cause-specific 위험 모형과 subdistribution을 이용한 비례 위험 모형 방법이다. 그 이후에도 많은 모형이 제시되었지만, 추정 방법 면에서 설명력이 부족하거나 알고리즘으로 구현하기 어려운 단점을 가지고 있어서 잘 활용되고 있지 않다. 이 논문에서는 Cause-specific 위험 모형, subdistribution을 이용한 비례 위험 모형과 비교적 최근에 제시된 이항 회귀 모형(direct binomial model), 절대 위험 회귀 모형(absolute risk regression model), Eriksson 등 (2015)의 비례 오즈 모형(proportional odds model)을 소개하고 추정 방법을 간단히 설명하고자 한다. 각 모형에 대하여 SAS와 R을 이용한 활용 방법을 제시하고, 두 가지 경쟁위험이 존재하는 데이터를 R을 이용하여 분석하였다.

Keywords

References

  1. Beyersmann, J., Dettenkofer, M., Bertz, H., and Schumacher, M. (2007). A competing risks analysis of bloodstream infection after stem-cell transplantation using subdistribution hazards and cause-specific hazards, Statistics in Medicine, 26, 5360-5369. https://doi.org/10.1002/sim.3006
  2. Chen, K., Jin, Z., and Ying, Z. (2002). Semiparametric analysis of transformation models with censored data, Biometrika, 89, 659-668. https://doi.org/10.1093/biomet/89.3.659
  3. Cox, D. R. (1972). Regression models and life tables (with discussion), Journal of the Royal Statistical Society, 34, 187-220.
  4. Eriksson, F., Li, J., Scheike, T., and Zhang, M. J. (2015). The proportional odds cumulative incidence model for competing risks, Biometrics, 71, 687-695. https://doi.org/10.1111/biom.12330
  5. Fine, J. P. (2001). Regression modeling of competing crude failure probabilities, Biostatistics, 2, 85-97. https://doi.org/10.1093/biostatistics/2.1.85
  6. Fine, J. P. and Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk, Journal of the American Statistical Association, 94, 496-509. https://doi.org/10.1080/01621459.1999.10474144
  7. Gail, M. H. (2005). Relative Hazard, Encyclopedia of Biostatistics, 7.
  8. Gerds, T. A., Scheike, T. H., and Andersen, P. K. (2012). Absolute risk regression for competing risks: interpretation, link functions, and prediction, Statistics in Medicine, 31, 3921-3930. https://doi.org/10.1002/sim.5459
  9. Gray, R. J. (1988). A class of K-sample tests for comparing the cumulative incidence of a competing risk, The Annals of Statistics, 16, 1141-1154. https://doi.org/10.1214/aos/1176350951
  10. Holt, J. D. (1978). Competing risk analyses with special reference to matched pair experiments, Biometrika, 65, 159-165. https://doi.org/10.1093/biomet/65.1.159
  11. Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
  12. Lau, B., Cole, S. R., and Gange, S. J. (2009). Competing risk regression models for epidemiologic data, American Journal of Epidemiology, kwp107. https://doi.org/10.1093/aje/kwp107
  13. Lin, D. Y. (1997). Non-parametric inference for cumulative incidence functions in competing risks studies, Statistics in Medicine, 16, 901-910. https://doi.org/10.1002/(SICI)1097-0258(19970430)16:8<901::AID-SIM543>3.0.CO;2-M
  14. Prentice, R. L., Kalbfleisch, J. D., Peterson Jr, A. V., Flournoy, N., Farewell, V. T., and Breslow, N. E. (1978). The analysis of failure times in the presence of competing risks, Biometrics, 541-554.
  15. Robins, J. M. and Rotnitzky, A. (1995). Semiparametric efficiency in multivariate regression models with missing data, Journal of the American Statistical Association, 90, 122-129. https://doi.org/10.1080/01621459.1995.10476494
  16. Scheike, T. H. and Zhang, M. J. (2011). Analyzing competing risk data using the R timereg package, Journal of Statistical Software, 38.
  17. Scheike, T. H., Zhang, M. J., and Gerds, T. A. (2008). Predicting cumulative incidence probability by direct binomial regression, Biometrika, 95, 205-220. https://doi.org/10.1093/biomet/asm096