참고문헌
- Kim KH, Abdi S. Rediscovery of nefopam for the treatment of neuropathic pain. Korean J Pain 2014; 27: 103-11. https://doi.org/10.3344/kjp.2014.27.2.103
- Esposito E, Romandini S, Merlo-Pich E, Mennini T, Samanin R. Evidence of the involvement of dopamine in the analgesic effect of nefopam. Eur J Pharmacol 1986; 128: 157-64. https://doi.org/10.1016/0014-2999(86)90762-4
- Fuller RW, Snoddy HD. Evaluation of nefopam as a monoamine uptake inhibitor in vivo in mice. Neuropharmacology 1993; 32: 995-9. https://doi.org/10.1016/0028-3908(93)90064-A
- Hunskaar S, Fasmer OB, Broch OJ, Hole K. Involvement of central serotonergic pathways in nefopam-induced antinociception. Eur J Pharmacol 1987; 138: 77-82. https://doi.org/10.1016/0014-2999(87)90339-6
- Rosland JH, Hole K. The effect of nefopam and its enantiomers on the uptake of 5-hydroxytryptamine, noradrenaline and dopamine in crude rat brain synaptosomal preparations. J Pharm Pharmacol 1990; 42: 437-8. https://doi.org/10.1111/j.2042-7158.1990.tb06587.x
- Vonvoigtlander PF, Lewis RA, Neff GL, Triezenberg HJ. Involvement of biogenic amines with the mechanisms of novel analgesics. Prog Neuropsychopharmacol Biol Psychiatry 1983; 7: 651-6. https://doi.org/10.1016/0278-5846(83)90040-4
- Gray AM, Nevinson MJ, Sewell RD. The involvement of opioidergic and noradrenergic mechanisms in nefopam antinociception. Eur J Pharmacol 1999; 365: 149-57. https://doi.org/10.1016/S0014-2999(98)00837-1
- Girard P, Coppé MC, Verniers D, Pansart Y, Gillardin JM. Role of catecholamines and serotonin receptor subtypes in nefopam-induced antinociception. Pharmacol Res 2006; 54: 195-202. https://doi.org/10.1016/j.phrs.2006.04.008
- Jeong SH, Heo BH, Park SH, Kim WM, Lee HG, Yoon MH, et al. Spinal noradrenergic modulation and the role of the alpha-2 receptor in the antinociceptive effect of intrathecal nefopam in the formalin test. Korean J Pain 2014; 27: 23-9. https://doi.org/10.3344/kjp.2014.27.1.23
- Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol Behav 1976; 17: 1031-6. https://doi.org/10.1016/0031-9384(76)90029-9
- Cho SY, Park AR, Yoon MH, Lee HG, Kim WM, Choi JI. Antinociceptive effect of intrathecal nefopam and interaction with morphine in formalin-induced pain of rats. Korean J Pain 2013; 26: 14-20. https://doi.org/10.3344/kjp.2013.26.1.14
- Coderre TJ, Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 1992; 12: 3665-70. https://doi.org/10.1523/JNEUROSCI.12-09-03665.1992
- Lee HG, Choi JI, Yoon MH, Obata H, Saito S, Kim WM. The antiallodynic effect of intrathecal tianeptine is exerted by increased serotonin and norepinephrine in the spinal dorsal horn. Neurosci Lett 2014; 583: 103-7. https://doi.org/10.1016/j.neulet.2014.09.022
- Smith DF, Glaser R, Gee A, Gjedde A. [11C]Nefopam as a potential PET tracer of serotonin reuptake sites. In: Quantification of brain function using PET. Edited by Myers R, Cunningham V, Bailey D, Jones T. San Diego (CA), Academic Press. 1996, pp 38-41.
- Millan MJ. Descending control of pain. Prog Neurobiol 2002; 66: 355-474. https://doi.org/10.1016/S0301-0082(02)00009-6
- Potvin S, Grignon S, Marchand S. Human evidence of a supra-spinal modulating role of dopamine on pain perception. Synapse 2009; 63: 390-402. https://doi.org/10.1002/syn.20616
- Franklin KB. Analgesia and abuse potential: an accidental association or a common substrate? Pharmacol Biochem Behav 1998; 59: 993-1002. https://doi.org/10.1016/S0091-3057(97)00535-2
- Altier N, Stewart J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci 1999; 65: 2269-87. https://doi.org/10.1016/S0024-3205(99)00298-2
- Cobacho N, de la Calle JL, Paino CL. Dopaminergic modulation of neuropathic pain: analgesia in rats by a D2-type receptor agonist. Brain Res Bull 2014; 106: 62-71. https://doi.org/10.1016/j.brainresbull.2014.06.003
- Fairbanks CA. Spinal delivery of analgesics in experimental models of pain and analgesia. Adv Drug Deliv Rev 2003; 55: 1007-41. https://doi.org/10.1016/S0169-409X(03)00101-7
- Xu JJ, Walla BC, Diaz MF, Fuller GN, Gutstein HB. Intermittent lumbar puncture in rats: a novel method for the experimental study of opioid tolerance. Anesth Analg 2006; 103: 714-20. https://doi.org/10.1213/01.ane.0000226100.46866.ea
- Ohkubo Y, Nomura K, Yamaguchi I. Involvement of dopamine in the mechanism of action of FR64822, a novel non-opioid antinociceptive compound. Eur J Pharmacol 1991; 204: 121-5. https://doi.org/10.1016/0014-2999(91)90695-M
- Novelli A, Diaz-Trelles R, Groppetti A, Fernandez-Sanchez MT. Nefopam inhibits calcium influx, cGMP formation, and NMDA receptor-dependent neurotoxicity following activation of voltage sensitive calcium channels. Amino Acids 2005; 28: 183-91. https://doi.org/10.1007/s00726-005-0166-0
- Verleye M, Andre N, Heulard I, Gillardin JM. Nefopam blocks voltage-sensitive sodium channels and modulates glutamatergic transmission in rodents. Brain Res 2004; 1013: 249-55. https://doi.org/10.1016/j.brainres.2004.04.035
피인용 문헌
- Effects of nefopam on catheter-related bladder discomfort in patients undergoing ureteroscopic litholapaxy vol.71, pp.3, 2018, https://doi.org/10.4097/kja.d.18.27113
- The Antiallodynic Effect of Nefopam on Vincristine-Induced Neuropathy in Mice vol.13, pp.None, 2016, https://doi.org/10.2147/jpr.s224478